Synchronization and coupling of Mandelbrot sets
Original Paper
First Online:
Received:
Accepted:
- 138 Downloads
- 7 Citations
Abstract
The definitions of synchronization and coupling of two different Mandelbrot sets are introduced. By the nonlinear coupling method, the synchronization and coupling of two different Mandelbrot sets are achieved, which make one Mandelbrot set change to be another and also make two different Mandelbrot sets change to be the same one.
Keywords
Synchronization Coupling Mandelbrot setPreview
Unable to display preview. Download preview PDF.
References
- 1.Fatou, P.: Sur les equations fonctionelles. Bull. Soc. Math. Fr. 47, 161–271 (1919) MathSciNetGoogle Scholar
- 2.Julia, G.: Memoire sur I’iteration des functions rationnelles. J. Math. Pure Appl. 8, 47–245 (1918) Google Scholar
- 3.Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982) zbMATHGoogle Scholar
- 4.Chen, J., Ngai, S.-M.: Eigenvalues and eigenfunctions of one-dimensional fractal Laplacians defined by iterated function systems with overlaps. J. Math. Anal. Appl. 364, 222–241 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Schindler, I., Tintarev, K.: Semilinear equations on fractal blowups. J. Math. Anal. Appl. 352, 57–64 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Jiang, H., Gu, Z.: Stokes’ theorem for domains with fractal boundary. J. Math. Anal. Appl. 355, 164–169 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Lancia, M.R., Mosco, U., Vivaldi, M.A.: Homogenization for conductive thin layers of pre-fractal type. J. Math. Anal. Appl. 347, 354–369 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Beck, C.: Physical meaning for Mandelbrot and Julia sets. Physica D 125, 171–182 (1999) MathSciNetzbMATHGoogle Scholar
- 9.Zhang, Y., Liu, S.: Gradient control and synchronization of Julia sets. Chin. Phys. B 17, 543–549 (2008) Google Scholar
Copyright information
© Springer Science+Business Media B.V. 2010