Nonlinear Dynamics

, Volume 63, Issue 1–2, pp 217–222 | Cite as

Topological chaos of universal elementary cellular automata rule

Original Paper

Abstract

The dynamical behaviors of elementary cellular automata rule 110 are analyzed from the viewpoint of symbolic dynamics in the space of bi-infinite symbolic sequences. This paper conducts a rigorous analysis of the relationship between rules 110, 170 and 240 by applying blocking transformation and releasing transformation. Based on this result, the topological chaos of T 110 induced by rule 110 is evaluated; that is, \(T_{110}^{9}\) and \(T_{110}^{16}\) are topologically mixing and possess the positive topological entropies on their respective subsystems. Therefore, it is natural to argue that the intrinsic complexity of rule 110 is high according to the usual measure of complexity organized around the symbolic dynamics of stationary symbol sequences. Finally, it is worth mentioning that the method presented in this paper is also applicable to other blocking transformation equivalences therein.

Keywords

Cellular automata Blocking transformation Chaos Universality Symbolic dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jia, B., Jiang, R., Wu, Q.S.: Traffic behavior near an off ramp in the cellular automaton traffic model. Phys. Rev. E 69(5), 056105 (2004) CrossRefGoogle Scholar
  2. 2.
    Prosperini, N., Perugini, D.: Application of a cellular automata model to the study of soil particle size distributions. Phys. A 383(2), 595–602 (2007) CrossRefGoogle Scholar
  3. 3.
    Sieburg, H.B., McCutchanb, J.A., Claya, O.K., Cabalerroc, L., Ostlund, J.J.: Simulation of HIV infection in artificial immune systems. Phys. D 45(1–3), 208–227 (1990) MATHCrossRefGoogle Scholar
  4. 4.
    Jiang, R., Wu, Q.S.: The adaptive cruise control vehicles in the cellular automata model. Phys. Lett. A 359, 99–102 (2006) MATHCrossRefGoogle Scholar
  5. 5.
    von Neumann, J., Burks, A.W.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966) Google Scholar
  6. 6.
    Gardner, M.: The fantastic combinations of John Conway’s new solitaire game ‘life’. Sci. Am. 223, 120–123 (1970) CrossRefGoogle Scholar
  7. 7.
    Hedlund, G.A.: Endomorphisms and automorphism of the shift dynamical system. Theory Comput. Syst. 3, 320–375 (1969) MATHMathSciNetGoogle Scholar
  8. 8.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore (1986) MATHGoogle Scholar
  10. 10.
    Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10, 1–35 (1984) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002) MATHGoogle Scholar
  12. 12.
    Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part III: Predicting the unpredictable. Int. J. Bifurc. Chaos 14(11), 3689–3820 (2004) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part IV: From Bernoulli-shift to 1/f spectrum. Int. J. Bifurc. Chaos 15(4), 1045–1223 (2005) MATHMathSciNetGoogle Scholar
  14. 14.
    Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part VI: From time-reversible attractors to the arrows of time. Int. J. Bifurc. Chaos 16(5), 1097–1373 (2006) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chua, L.O., Karacs, K., Sbitnev, V.I., Guan, J.B., Shin, J.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part VIII: More isles of Eden. Int. J. Bifurc. Chaos 17(11), 3741–3894 (2007) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jin, W.F., Chen, F.Y., Chen, G.R., Chen, L., Chen, F.F.: Extending the symbolic dynamics of Chua’s Bernoulli-shift rule 56. J. Cell. Autom. 5(1–2), 121–135 (2010) MATHMathSciNetGoogle Scholar
  17. 17.
    Chen, F.Y., Jin, W.F., Chen, G.R., Chen, F.F., Chen, L.: Chaos of elementary cellular automata rule 42 of Wolfram’s class II. Chaos 19(1), 013140 (2009) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Cook, M.: Introduction to the activity of rule 110. Copyright 1994–1998 Matthew Cook (1999) Google Scholar
  19. 19.
    Cook, M.: Universality in elementary cellular automata. Comput. Syst. 15(1), 1–40 (2004) MATHGoogle Scholar
  20. 20.
    Neary, T., Woods, D.: P-completeness of Cellular Automaton Rule 110. Lecture Notes in Comput. Sci., vol. 4051, pp. 132–143. Springer, Berlin (2006) Google Scholar
  21. 21.
    Ninagawa, S.: 1/f Noise in Elementary Cellular Automaton Rule 110. Lecture Notes in Comput. Sci., vol. 4135, pp. 207–216. Springer, Berlin (2006) Google Scholar
  22. 22.
    Langton, C.: Computation at the edge of chaos. Phys. D 42, 12–37 (1990) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Favati, P., Lotti, G., Margara, L.: Additive one-dimensional cellular automata are chaotic according to Devaney’s definition of chaos. Theory Comput. Sci. 174, 157–170 (1997) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kitchens, B.: Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts. Springer, Berlin (1998) MATHGoogle Scholar
  25. 25.
    Blanchard, F., Glasner, E., Kolyada, S.: On Li–Yorke pairs. J. Reine Angew. Math. 547, 51–68 (2002) MATHMathSciNetGoogle Scholar
  26. 26.
    Delvenne, J.C., Kurka, P., Blondel, V.: Decidability and Universality in Symbolic Dynamical Systems. Lecture Notes in Comput. Sci., vol. 3354, pp. 104–115. Springer, Berlin (2005) Google Scholar
  27. 27.
    Cattaneo, G., Formenti, E., Margara, L., Mauri, G.: On the dynamical behavior of chaotic cellular automata. Theory Comput. Sci. 217, 31–51 (1999) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouP.R. China
  2. 2.School of ScienceHangzhou Dianzi UniversityHangzhouP.R. China

Personalised recommendations