Advertisement

Nonlinear Dynamics

, Volume 62, Issue 3, pp 561–565 | Cite as

A stochastic complex model with random imaginary noise

  • RongLing Lang
Original Paper

Abstract

In this paper, we study a stochastic complex beam–beam interaction model subjected to random imaginary noise. The general procedure is presented to obtain the Fokker–Planck–Kolmogorov equation (FPK) using stochastic averaging method in the case of a special example. The exact stationary probability of FPK is examined theoretically under certain conditions and then the first and second moments for the amplitude are expressed analytically. Finally, a numerical simulation is performed to verify the theoretical results of moments and excellent agreement can be observed between these two results.

Keywords

Stationary probability Imaginary noise Complex model Stochastic averaging method (SAM) Fokker–Planck–Kolmogorov equation (FPK) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Genin, J., Maybee, J.S.: Stability in the three dimensional whirling problem. Int. J. Non-Linear Mech. 4, 205–215 (1969) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Tondl, A.: Determination of the limit of initiation of self-excited vibration of rotors. Int. J. Non-Linear Mech. 15, 417–428 (1980) zbMATHCrossRefGoogle Scholar
  3. 3.
    Cveticanin, L., Maretic, R.: A Van der Pol absorber for rotor vibrations. J. Sound Vib. 173(2), 145–155 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Muszynska, A.: Whirl and whip-rotor/bearing stability problems. J. Sound Vib. 110(3), 443–462 (1986) CrossRefGoogle Scholar
  5. 5.
    Wedig, W.V.: Dynamic stability of beams under axial forces: Lyapunov exponents for general fluctuating loads. In: Kratzig, W.B. et al. (eds.) Structural Dynamics, pp. 141–148. Balkema, Rotterdam (1990) Google Scholar
  6. 6.
    Month, M., Herrera, J.C. (eds.): Nonlinear Dynamics and the Beam–Beam Interaction. AIP Conference Proceedings, vol. 57. AIP, New York (1979) Google Scholar
  7. 7.
    Bountis, T., Mahmoud, G.M.: Synchronized periodic orbits in beam–beam interaction models of one and two spatial dimensions. Part. Accel. 22, 124–147 (1987) Google Scholar
  8. 8.
    Mahmoud, G.M.: Beam–beam interaction models with a small stochastic perturbation. Physica A 216, 445–451 (1995) CrossRefGoogle Scholar
  9. 9.
    Mahmoud, G.M.: Stability regions for coupled Hill’s equations. Physica A 242, 239–249 (1997) CrossRefGoogle Scholar
  10. 10.
    Mahmoud, G.M., Bountis, T.: The dynamics of systems of complex nonlinear oscillators: A Review. Int. J. Bifurc. Chaos 14, 3821–3846 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rauh, A., Hannibal, L., Abraham, N.: Global stability properties of the complex Lorenz model. Physica D 99, 45–58 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Flessas, G.P., Leach, P.G.L.: A completely integrable case in the complex Lorenz equations. Phys. Lett. A 154(1), 127–130 (1991) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gibbon, J.D., McGuinness, M.J.: The real and complex Lorenz equations in rotating fluids and lasers. Physica D 5, 108–122 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: The real and complex Lorenz equations and their relevance to physical systems. Physica D 7, 126–134 (1983) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: The complex Lorenz equations. Physica D 4, 139–163 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Cveticanin, L.: Approximate analytical solutions to a class of nonlinear equations with complex functions. J. Sound Vib. 152(2), 289–302 (1992) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Xu, Y., Xu, W., Mahmoud, G.M.: On a complex beam–beam interaction model with random forcing. Physica A 336, 437–460 (2004) CrossRefGoogle Scholar
  18. 18.
    Xu, Y., Xu, W., Mahmoud, G.M.: Suppressing chaos of a complex Duffing’s system using a random phase. Chaos Solitons Fractals 23, 265–273 (2005) zbMATHCrossRefGoogle Scholar
  19. 19.
    Xu, Y., Xu, W., Mahmoud, G.M.: Responses of coupled Duffing’s equations with random excitations. Int. J. Differ. Equ. Appl. 7(4), 415–442 (2003) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Xu, Y., Xu, W., Mahmoud, G.M.: Generating chaotic limit cycles for a complex Duffing–Van der Pol system using a random phase. Int. J. Modern Phys. C 16(9), 1437–1447 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Xu, Y., Xu, W., Mahmoud, G.M.: On a complex Duffing system with random excitation. Chaos Solitons Fractals 35(1), 126–132 (2008) zbMATHCrossRefGoogle Scholar
  22. 22.
    Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 2. Gordon and Breach, New York (1967) zbMATHGoogle Scholar
  23. 23.
    Roberts, J., Spanos, P.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-Linear Mech. 21, 111–134 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Khasminskii, R.Z.: Principle of averaging of parabolic and elliptic differential equations for Markov process with small diffusion. Theory Probab. Appl. 8 (1963) Google Scholar
  25. 25.
    Khasminskii, R.Z.: A limit theorem for the solution of differential equations with random right-hand sides. Theory Probab. Appl 11, 390–405 (1963) CrossRefGoogle Scholar
  26. 26.
    Papanicolaou, G.C., Kohler, W.: Asymptotic theory of mixing stochastic ordinary differential equations. Commun. Pure Appl. Math. 27, 641–668 (1974) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sri Namachchivaya, N., Ramakrishnan, N.: Stochastic dynamics of parametrically excited two d.o.f systems with symmetry. J. Sound Vib. 262, 613–631 (2003) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Huang, Z.L., Zhu, W.Q.: A new approach to almost-sure asymptotic stability of stochastic systems of higher dimension. Int. J. Non-Linear Mech. 38, 239–247 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Xu, Y., Xu, W., Mahmoud, G.M., Lei, Y.: Beam–beam interaction models under narrow-band random excitation. Physica A 346, 372–386 (2005) CrossRefGoogle Scholar
  30. 30.
    Roberts, J.B., Vasta, M.: Response of non-linear oscillators to non-white random excitation using an energy based method. In: Narayanan, S., Iyengar, R.N. (eds.) Nonlinear and Stochastic Structural Dynamics. Proceedings of IUTAM Symposium, pp. 221–231. Kluwer Academic, Dordrecht (2001) Google Scholar
  31. 31.
    Zhu, W.Q.: Stochastic averaging methods in random vibration. ASME Appl. Mech. Rev. 41(5), 189–199 (1988) CrossRefGoogle Scholar
  32. 32.
    Zhu, W.Q.: Recent developments and applications of the stochastic averaging method in random vibration. ASME Appl. Mech. Rev. 49(10), s72–s80 (1996) CrossRefGoogle Scholar
  33. 33.
    Miller, K.S.: Complex Stochastic Processes. Addison-Wesley, Reading (1974) zbMATHGoogle Scholar
  34. 34.
    Neeser, F.D.: Proper complex random processes with applications to information theory. IEEE Trans. Inform. Theory 39, 1293–1302 (1993) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringBeijing University of Aeronautics and AstronauticsBeijingP.R. China

Personalised recommendations