Advertisement

Nonlinear Dynamics

, Volume 62, Issue 1–2, pp 291–303 | Cite as

Minimal formulation of joint motion for biomechanisms

  • Ajay Seth
  • Michael Sherman
  • Peter Eastman
  • Scott Delp
Orignal Paper

Abstract

Biomechanical systems share many properties with mechanically engineered systems, and researchers have successfully employed mechanical engineering simulation software to investigate the mechanical behavior of diverse biological mechanisms, ranging from biomolecules to human joints. Unlike their man-made counterparts, however, biomechanisms rarely exhibit the simple, uncoupled, pure-axial motion that is engineered into mechanical joints such as sliders, pins, and ball-and-socket joints. Current mechanical modeling software based on internal-coordinate multibody dynamics can formulate engineered joints directly in minimal coordinates, but requires additional coordinates restricted by constraints to model more complex motions. This approach can be inefficient, inaccurate, and difficult for biomechanists to customize. Since complex motion is the rule rather than the exception in biomechanisms, the benefits of minimal coordinate modeling are not fully realized in biomedical research. Here we introduce a practical implementation for empirically-defined internal-coordinate joints, which we call “mobilizers.” A mobilizer encapsulates the observations, measurement frame, and modeling requirements into a hinge specification of the permissible-motion manifold for a minimal set of internal coordinates. Mobilizers support nonlinear mappings that are mathematically equivalent to constraint manifolds but have the advantages of fewer coordinates, no constraints, and exact representation of the biomechanical motion-space—the benefits long enjoyed for internal-coordinate models of mechanical joints. Hinge matrices within the mobilizer are easily specified by user-supplied functions, and provide a direct means of mapping permissible motion derived from empirical data. We present computational results showing substantial performance and accuracy gains for mobilizers versus equivalent joints implemented with constraints. Examples of mobilizers for joints from human biomechanics and molecular dynamics are given. All methods and examples were implemented in Simbody™—an open source multibody-dynamics solver available at https://Simtk.org.

Keywords

Multibody dynamics Internal coordinates Computer simulation Biomechanics Molecular dynamics Skeletal modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hurwitz, D.E., Ryals, A.R., Block, J.A., Sharma, L., Schnitzer, T.J., Andriacchi, T.P.: Knee pain and joint loading in subjects with osteoarthritis of the knee. J. Orthop. Res. 18(4), 572–579 (2000) CrossRefGoogle Scholar
  2. 2.
    Baliunas, A.J., Hurwitz, D.E., Ryals, A.B., Karrar, A., Case, J.P., Block, J.A., Andriacchi, T.P.: Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthr. Cartil. 10(7), 573–579 (2002) CrossRefGoogle Scholar
  3. 3.
    Piazza, S.J., Delp, S.L.: Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123(6), 599–606 (2001) CrossRefGoogle Scholar
  4. 4.
    Isralewitz, B., Gao, M., Schulten, K.: Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 11(2), 224–230 (2001) CrossRefGoogle Scholar
  5. 5.
    Tang, S., Liao, J.-C., Dunn, A.R., Altman, R.B., Spudich, J.A., Schmidt, J.P.: Predicting allosteric communication in myosin via a pathway of conserved residues. J. Mol. Biol. 373(5), 1361–1373 (2007) CrossRefGoogle Scholar
  6. 6.
    Sponer, J., Lankas, F. (eds.): Computational Studies of RNA and DNA. Springer, Berlin (2006) Google Scholar
  7. 7.
    Kitano, H.: Systems biology: A brief overview. Science 295(5560), 1662–1664 (2002) CrossRefGoogle Scholar
  8. 8.
    Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., Baker, D.: Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649), 1364–1368 (2003) CrossRefGoogle Scholar
  9. 9.
    Eich-Soellner, E., Fuhrer, C.: Numerical Methods in Multibody Dynamics. Tuebner, Leipzig (1998) zbMATHGoogle Scholar
  10. 10.
    Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill, New York (1983) Google Scholar
  11. 11.
    Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J. Guid. Control Dyn. 14, 531–542 (1991) zbMATHCrossRefGoogle Scholar
  12. 12.
    Brenan, K., Campbell, S., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn. SIAM, Philadelphia (1987) Google Scholar
  13. 13.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamic systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30(5), 1467–1482 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sobieszczanski-Sobieski, J., Haftka, R.T.: Multidisciplinary aerospace design optimization: Survey of recent developments. Struct. Multidiscip. Optim. 14(1), 1–23 (1997) Google Scholar
  16. 16.
    Reinbolt, J., Schutte, J., Fregly, B., Koh, B., Haftka, R., George, A., Mitchell, K.: Determination of patient-specific multi-joint kinematic models through two-level optimization. J. Biomech. 38(3), 621–626 (2005) CrossRefGoogle Scholar
  17. 17.
    Anderson, K.S., Hsu, Y.: Analytical fully-recursive sensitivity analysis for multibody dynamic chain systems. Multibody Syst. Dyn. 8(1), 1–27 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Stryk, O.: Optimal control of multibody systems in minimal coordinates. ZAMM-Z. Angew. Math. Mech. 78, 1117–1120 (1998) Google Scholar
  19. 19.
    Lo, J., Metaxas, D.: Recursive dynamics and optimal control techniques for human motion planning. In: Computer Animation Proceedings, pp. 220–234. Geneva, Switzerland (1999) Google Scholar
  20. 20.
    Neptune, R.R., Hull, M.L.: Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. J. Biomech. Eng. 120(3), 334–341 (1998) CrossRefGoogle Scholar
  21. 21.
    Anderson, F., Pandy, M.: A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2(3), 201–231 (1999) CrossRefGoogle Scholar
  22. 22.
    Delp, S., Loan, J.: A computational framework for simulating and analyzing human and animal movement. Comput. Sci. Eng. 2(5), 46–55 (2000) CrossRefGoogle Scholar
  23. 23.
    McLean, S.G., Su, A., van den Bogert, A.J.: Development and validation of a 3-D model to predict knee joint loading during dynamic movement. J. Biomech. Eng. 125(6), 864–874 (2003) CrossRefGoogle Scholar
  24. 24.
    Brunger, A., Adams, P., Clore, G., DeLano, W., Gros, P., Grosse-Kunstleve, R., Jiang, J., Kuszewski, J., Nilges, M., Pannu, N.: Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54(5), 4449 (1998) CrossRefGoogle Scholar
  25. 25.
    Schwieters, C.D., Clore, G.M.: Internal coordinates for molecular dynamics and minimization in structure determination and refinement. J. Magn. Reson. 152(2), 288–302 (2001) CrossRefGoogle Scholar
  26. 26.
    Guntert, P., Mumenthaler, C., Wuthrich, K.: Torsion angle dynamics for NMR structure calculation with the new program Dyana. J. Mol. Biol. 273, 283 (1997) CrossRefGoogle Scholar
  27. 27.
    Vaidehi, N., Jain, A., Goddard, W. III: Constant temperature constrained molecular dynamics: The Newton–Euler inverse mass operator method. J. Phys. Chem. 100(25), 10508–10517 (1996) CrossRefGoogle Scholar
  28. 28.
    Kalani, M.Y.S., Vaidehi, N., Hall, S.E., Trabanino, R.J., Freddolino, P.L., Kalani, M.A., Floriano, W.B., Kam, V.W.T., Goddard, W.A.: The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc. Natl. Acad. Sci. USA 101(11), 3815–3820 (2004) CrossRefGoogle Scholar
  29. 29.
    Tóth, G., Borics, A.: Flap opening mechanism of HIV-1 protease. J. Mol. Graph. 24(6), 465–474 (2006) CrossRefGoogle Scholar
  30. 30.
    Featherstone, R.: Robot Dynamics Algorithms. Kluwer, Amsterdam (1987) Google Scholar
  31. 31.
    Rodriguez, G., Jain, A., Kreutz-Delgado, K.: Spatial operator algebra for multibody system dynamics. J. Astronaut. Sci. 44(1), 27–50 (1992) MathSciNetGoogle Scholar
  32. 32.
    Anderson, K., Critchley, J.: Improved ‘Order-N’ performance algorithm for the simulation of constrained multi-rigid-body dynamic systems. Multibody Syst. Dyn. 9(2), 185–212 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hollars, M.G., Rosenthal, D.E., Sherman, M.A.: SD/FAST User’s, Guide B.2 (1994) Google Scholar
  34. 34.
    The Mathworks: Simmechanics 3 reference, October (2008) Google Scholar
  35. 35.
    Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767 (1990) CrossRefGoogle Scholar
  36. 36.
    van der Helm, F.C.T.: Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J. Biomech. 27(5), 527–550 (1994) CrossRefGoogle Scholar
  37. 37.
    Krebs, W.G., Gerstein, M.: Survey and summary: The morph server: A standardized system for analyzing and visualizing macromolecular motions in a database framework. Nucleic Acids Res. 28(8), 1665–1675 (2000) CrossRefGoogle Scholar
  38. 38.
    Lee, S.-H., Terzopoulos, D.: Spline joints for multibody dynamics. ACM Trans. Graph. 27(3), 1–8 (2008) CrossRefGoogle Scholar
  39. 39.
    Jain, A., Vaidehi, N., Rodriguez, G.: A fast recursive algorithm for molecular dynamics simulation. J. Comput. Phys. 106(2), 258–268 (1993) zbMATHGoogle Scholar
  40. 40.
    Kwatny, H.G., Blankenship, G.L.: Symbolic construction of models for multibody dynamics. IEEE Trans. Robot. Autom. 11(2), 271–281 (1995) CrossRefGoogle Scholar
  41. 41.
    Mukherjee, R., Anderson, K.: Orthogonal complement based divide-and-conquer algorithm for constrained multibody systems. Nonlinear Dyn. 48(1), 199–215 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983) CrossRefGoogle Scholar
  43. 43.
    Schmidt, J.P., Delp, S.L., Sherman, M.A., Taylor, C.A., Pande, V.S., Altman, R.B.: The Simbios National Center: Systems biology in motion. Proc. IEEE 96(8), 1266–1280 (2008) CrossRefGoogle Scholar
  44. 44.
    Ryan, R.: Adams-multibody system analysis software. In: Schiehlen, W. (ed.) Multibody Systems Handbook. Springer, Berlin (1990) Google Scholar
  45. 45.
    Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. IEEE, New York (2004) CrossRefGoogle Scholar
  46. 46.
    Featherstone, R.: Rigid Body Dynamics Algorithms, 2nd edn. Springer, Berlin (2008) zbMATHGoogle Scholar
  47. 47.
    Gu, D., Chen, Y., Dai, K., Zhang, S., Yuan, J.: The shape of the acetabular cartilage surface: A geometric morphometric study using three-dimensional scanning. Med. Eng. Phys. 30(8), 1024–1031 (2008) CrossRefGoogle Scholar
  48. 48.
    De Sapio, V., Holzbaur, K., Khatib, O.: The control of kinematically constrained shoulder complexes: Physiological and humanoid examples. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2952–2959, Orlando, FL. IEEE, New York (2006) Google Scholar
  49. 49.
    Featherstone, R.: Plucker basis vectors. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1892–1897, Orlando, FL. IEEE, New York (2006) Google Scholar
  50. 50.
    Rodriguez, G.: Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics. IEEE J. Robot. Autom. 3(6), 624–639 (1987) CrossRefGoogle Scholar
  51. 51.
    Yamaguchi, G.T., Zajac, F.E.: A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 22(1), 1–10 (1989) CrossRefGoogle Scholar
  52. 52.
    Wilson, D., Feikes, J., Zavatsky, A., O’Connor, J.: The components of passive knee movement are coupled to flexion angle. J. Biomech. 33(4), 465–473 (2000) CrossRefGoogle Scholar
  53. 53.
    Dennis, D.A., Komistek, R.D., Ho, W.A., Gabriel, S.M.: In vivo knee kinematics derived using an inverse perspective technique. Clin. Orthop. Relat. Res. 331, 107–117 (1996) CrossRefGoogle Scholar
  54. 54.
    Thelen, D., Anderson, F.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39(6), 1107–1115 (2006) CrossRefGoogle Scholar
  55. 55.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007) CrossRefGoogle Scholar
  56. 56.
    Liu, M., Anderson, F., Schwartz, M., Delp, S.: Muscle contributions to support and progression over a range of walking speeds. J. Biomech. 41(15), 3243–3252 (2008) CrossRefGoogle Scholar
  57. 57.
    Leach, A.: Molecular Modelling: Principles and Applications. Longman, New York (1996) Google Scholar
  58. 58.
    Sonnenschein, R.: An improved algorithm for molecular dynamics simulation of rigid molecules. J. Comput. Phys. 59(2), 347–350 (1985) zbMATHCrossRefGoogle Scholar
  59. 59.
    Chun, H.M., Padilla, C.E., Chin, D.N., Watanabe, M., Karlov, V.I., Alper, H.E., Soosaar, K., Blair, K.B., Becker, O.M., Caves, L.S.D., Nagle, R., Haney, D.N., Farmer, B.L.: MBO(n)D: A multibody method for long-time molecular dynamics simulations. J. Comput. Chem. 21(3), 159–184 (2000) CrossRefGoogle Scholar
  60. 60.
    Flores, S.C., Keating, K.S., Painter, J., Morcos, F., Nguyen, K., Merritt, E.A., Kuhn, L.A., Gerstein, M.B.: Hingemaster: Normal mode hinge prediction approach and integration of complementary predictors. Proteins 73(2), 299–319 (2008) CrossRefGoogle Scholar
  61. 61.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996) CrossRefGoogle Scholar
  62. 62.
    Parker, D., Bryant, Z., Delp, S.L.: Coarse-grained structural modeling of molecular motors using multibody dynamics. Cell. Mol. Bioeng. 2(3), 366–374 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ajay Seth
    • 1
  • Michael Sherman
    • 1
  • Peter Eastman
    • 1
  • Scott Delp
    • 1
  1. 1.Bioengineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations