Advertisement

Nonlinear Dynamics

, Volume 61, Issue 1–2, pp 101–107 | Cite as

Symmetry justification of Lorenz’ maximum simplification

  • Alexander Bihlo
  • Roman O. Popovych
Original Paper

Abstract

In 1960 Edward Lorenz (1917–2008) published a pioneering work on the ‘maximum simplification’ of the barotropic vorticity equation. He derived a coupled three-mode system and interpreted it as the minimum core of large-scale fluid mechanics on a ‘finite but unbounded’ domain. The model was obtained in a heuristic way, without giving a rigorous justification for the chosen selection of modes. In this paper, it is shown that one can legitimate Lorenz’ choice by using symmetry transformations of the spectral form of the vorticity equation. The Lorenz three-mode model arises as the final step in a hierarchy of models constructed via the component reduction by means of symmetries. In this sense, the Lorenz model is indeed the ‘maximum simplification’ of the vorticity equation.

Lie symmetries Point symmetries Discrete symmetries Induced symmetries Barotropic vorticity equation Lorenz model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anco, S.C., Bluman, G.: Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications. Eur. J. Appl. Math. 13, 545–566 (2002) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Anderson, I.M., Fels, M.E., Torre, C.G.: Group invariant solutions without transversality. Commun. Math. Phys. 212, 653–686 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Andreev, V.K., Rodionov, A.A., Group analysis of equations of planar flows of an ideal fluid in Lagrangian coordinates. Dokl. Akad. Nauk SSSR 298, 1358–1361 (1988) MathSciNetGoogle Scholar
  4. 4.
    Berker, R.: Intégration des équations du mouvement d’un fluide visqueux incompressible. In: Handbuch der Physik, vol. VIII/2, pp. 1–384. Springer, Berlin (1963) Google Scholar
  5. 5.
    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1985) zbMATHGoogle Scholar
  6. 6.
    Head, A.K.: LIE, a PC program for Lie analysis of differential equations. Comput. Phys. Comm. 77, 241–248 (1993) See also http://www.cmst.csiro.au/LIE/LIE.htm zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lorenz, E.N.: Maximum simplification of the dynamic equations. Tellus 12, 243–254 (1960) CrossRefGoogle Scholar
  8. 8.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993) zbMATHGoogle Scholar
  9. 9.
    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982) zbMATHGoogle Scholar
  10. 10.
    Thiffeault, J.-L., Horton, W.: Energy-conserving truncations for convection with shear flow. Phys. Fluid 8, 1715–1719 (1996) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Institute of Mathematics of NAS of UkraineKyivUkraine

Personalised recommendations