Advertisement

Nonlinear Dynamics

, Volume 61, Issue 1–2, pp 29–41 | Cite as

Parameter identification of chaotic systems using improved differential evolution algorithm

  • Wen-Hsien Ho
  • Jyh-Horng Chou
  • Ching-Yi Guo
Original Paper

Abstract

In this paper, an improved differential evolution algorithm, named the Taguchi-sliding-based differential evolution algorithm (TSBDEA), is proposed to solve the problem of parameter identification for Chen, Lü and Rossler chaotic systems. The TSBDEA, a powerful global numerical optimization method, combines the differential evolution algorithm (DEA) with the Taguchi-sliding-level method (TSLM). The TSLM is used as the crossover operation of the DEA. Then, the systematic reasoning ability of the TSLM is provided to select the better offspring to achieve the crossover, and consequently enhance the DEA. Therefore, the TSBDEA can be more robust, statistically sound, and quickly convergent. Three illustrative examples of parameter identification for Chen, Lü and Rossler chaotic systems are given to demonstrate the applicability of the proposed TSBDEA, and the computational experimental results show that the proposed TSBDEA not only can find optimal or close-to-optimal solutions but also can obtain both better and more robust results than the DEA.

Differential evolution algorithm Taguchi sliding level method Chaotic systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agiza, H.N., Yassen, M.T.: Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278, 191–197 (2001) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Babu, B.V., Jehan, M.M.L.: Differential evolution for multi-objective optimization. In: Proc. of the IEEE Congress on Evolutionary Computation, Canberra, Australia, vol. 4, pp. 2696–2703 (2003) Google Scholar
  3. 3.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zurner, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical Benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006) CrossRefGoogle Scholar
  4. 4.
    Chang, W.D.: Parameter identification of Rossler’s chaotic system by an evolutionary algorithm. Chaos Solitons Fractals 29, 1047–1053 (2006) CrossRefGoogle Scholar
  5. 5.
    Chang, W.D.: Parameter identification of Chen and Lü systems: a differential evolution approach. Chaos Solitons Fractals 32, 1469–1476 (2007) MATHCrossRefGoogle Scholar
  6. 6.
    Chen, S., Lü, J.: Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys. Lett. A 299, 353–358 (2002) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, M., Zhou, D., Shang, Y.: Synchronizing a class of uncertain chaotic systems. Phys. Lett. A 337, 384–390 (2005) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cheng, S.L., Hwang, C.: Optimal approximation of linear systems by a differential evolution algorithm. IEEE Trans. Syst. Man Cybern. A 31, 698–707 (2001) CrossRefGoogle Scholar
  9. 9.
    Dong, Z.Y., Lu, M., Lu, Z., Wong, K.P.: A differential evolution based method for power system planning. In: Proc. of the IEEE Congress on Evolutionary Computation, Vancouver, Canada, pp. 16–21 (2006) Google Scholar
  10. 10.
    Elabbasy, E.M., Agiza, H.N., El-Dessoky, M.M.: Adaptive synchronization of Lü system with uncertain parameters. Chaos Solitons Fractals 21, 657–667 (2004) MATHCrossRefGoogle Scholar
  11. 11.
    Elabbasy, E.M., Agiza, H.N., El-Dessoky, M.M.: Global synchronization criterion and adaptive synchronization for new chaotic system. Chaos Solitons Fractals 23, 1299–1309 (2005) MATHMathSciNetGoogle Scholar
  12. 12.
    Hubler, A.W.: Adaptive control of chaotic systems. Helv. Phys. Acta 62, 343–346 (1989) Google Scholar
  13. 13.
    Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: AI Advances in Artificial Intelligence, pp. 861–872 (2004) Google Scholar
  14. 14.
    Kapitaniak, T.: Continuous control and synchronization in chaotic systems. Chaos Solitons Fractals 6, 237–244 (1995) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Karaboga, N.: Digital IIR filter design using differential evolution algorithm. EURASIP J. Appl. Signal Process. 2005, 1269–1276 (2005) MATHCrossRefGoogle Scholar
  16. 16.
    Kim, J.H., Park, C.W., Kim, E., Park, M.: Adaptive synchronization of T-S fuzzy chaotic systems with unknown parameters. Chaos Solitons Fractals 24, 1353–1361 (2005) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Krishna, A.G.: Optimization of surface grinding operations using a differential evolution approach. J. Mater. Process. Technol. 183, 202–209 (2007) CrossRefGoogle Scholar
  18. 18.
    Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. 9, 448–462 (2005) MATHCrossRefGoogle Scholar
  19. 19.
    Lu, Z., Shieh, L.S., Chen, G.R.: On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization. Chaos Solitons Fractals 18, 819–827 (2003) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Trans. Evol. Comput. 12, 107–125 (2008) CrossRefGoogle Scholar
  21. 21.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Price, K.V., Storn, R., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005) MATHGoogle Scholar
  23. 23.
    Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12, 64–79 (2008) CrossRefGoogle Scholar
  24. 24.
    Storn, R.: System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 3, 22–34 (1999) CrossRefGoogle Scholar
  25. 25.
    Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA (1995) Google Scholar
  26. 26.
    Storn, R., Price, K.: Minimizing the real functions of the ICEC’96 contest by differential evolution. In: Proc. of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, pp. 842–844 (1996) Google Scholar
  27. 27.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Sun, Y.J.: Existence and uniqueness of limit cycle for a class of nonlinear discrete-time systems. Chaos Solitons Fractals 38, 89–96 (2008) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Sun, Y.J.: A simple observer of the generalized Chen chaotic systems. Chaos Solitons Fractals 39, 1641–1644 (2009) CrossRefGoogle Scholar
  30. 30.
    Tsai, J.T., Chou, J.H., Liu, T.K.: Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans. Neural Netw. 17, 69–80 (2006) CrossRefGoogle Scholar
  31. 31.
    Vaisakh, K., Srinivas, L.R.: Differential evolution approach for optimal power flow solution. J. Theor. Appl. Inf. Technol. 4, 261–268 (2008) Google Scholar
  32. 32.
    Wang, J.Y., Huang, D.X.: Parameter estimation for chaotic systems based on hybrid differential evolution algorithm. Acta Phys. Sinica 57, 2755–2760 (2008) MATHMathSciNetGoogle Scholar
  33. 33.
    Xue, F., Sanderson, A.C., Bonissone, P.P., Graves, R.J.: Fuzzy logic controlled multi-objective differential evolution. In: Proc. of the IEEE International Conference on Fuzzy Systems, Reno, NV, pp. 720–725 (2005) Google Scholar
  34. 34.
    Yang, S.S., Duan, C.K.: Generalized synchronization in chaotic systems. Chaos Solitons Fractals 9, 1703–1707 (1998) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Yassen, M.T.: Adaptive synchronization of Rossler and Lü systems with fully uncertain parameters. Chaos Solitons Fractals 23, 1527–1536 (2005) MATHMathSciNetGoogle Scholar
  36. 36.
    Yassen, M.T.: Adaptive synchronization of two different uncertain chaotic systems. Phys. Lett. A 337, 335–341 (2005) MATHCrossRefGoogle Scholar
  37. 37.
    Zhang, R., Ding, J.: Non-linear optimal control of manufacturing system based on modified differential evolution. In: Proc. of the IMACS Multiconference on Computational Engineering in Systems Applications, Beijing, China, pp. 1797–1803 (2006) Google Scholar
  38. 38.
    Zhang, J., Xu, J.: A new differential evolution for discontinuous optimization problems. In: Proc. of the IEEE International Conference on Natural Computation, Haikou, China, pp. 483–487 (2007) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Medical Information ManagementKaohsiung Medical UniversityKaohsiungTaiwan, ROC
  2. 2.Institute of System Information and ControlNational Kaohsiung First University of Science and TechnologyKaohsiungTaiwan, ROC

Personalised recommendations