Advertisement

Nonlinear Dynamics

, Volume 60, Issue 4, pp 615–630 | Cite as

Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system

  • Wenjuan Wu
  • Zengqiang Chen
Original Paper

Abstract

This paper presents a new four-dimensional autonomous system having complex hyperchaotic dynamics. Basic properties of this new system are analyzed, and the complex dynamical behaviors are investigated by dynamical analysis approaches, such as time series, Lyapunov exponents’ spectra, bifurcation diagram, phase portraits. Moreover, when this new system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of hyperchaotic systems reported before, which implies the new system has strong hyperchaotic dynamics in itself. The Kaplan–Yorke dimension, Poincaré sections and the frequency spectra are also utilized to demonstrate the complexity of the hyperchaotic attractor. It is also observed that the system undergoes an intermittent transition from period directly to hyperchaos. The statistical analysis of the intermittency transition process reveals that the mean lifetime of laminar state between bursts obeys the power-law distribution. It is shown that in such four-dimensional continuous system, the occurrence of intermittency may indicate a transition from period to hyperchaos not only to chaos, which provides a possible route to hyperchaos. Besides, the local bifurcation in this system is analyzed and then a Hopf bifurcation is proved to occur when the appropriate bifurcation parameter passes the critical value. All the conditions of Hopf bifurcation are derived by applying center manifold theorem and Poincaré–Andronov–Hopf bifurcation theorem. Numerical simulation results show consistency with our theoretical analysis.

Chaos Hyperchaos Hopf bifurcation Intermittency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  2. 2.
    Clifford, M.J., Cox, S.M.: Smart baffle placement for chaotic mixing. Nonlinear. Dyn. 43, 117–126 (2006) CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Lebaron, B., Arthur, W.B., Palmer, R.: Time series of properties of an artificial stock market. J. Econ. Dyn. Control 23, 1487–1516 (1999) CrossRefMATHGoogle Scholar
  4. 4.
    Ma, J.H., Cui, Y.Q., Liu, L.X.: A study on the complexity of a business cycle model with great excitements in non-resonant condition. Chaos Solitons Fractals 39, 2258–2267 (2009) CrossRefGoogle Scholar
  5. 5.
    Parlitz, U., Kocarev, L., Stojanovski, T.: Encoding messages using chaotic synchronization. Phys. Rev. E 53, 4351–4361 (1996) CrossRefGoogle Scholar
  6. 6.
    Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999) CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Matsumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. I 31, 1055–1058 (1984) CrossRefMATHGoogle Scholar
  8. 8.
    Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002) CrossRefMATHGoogle Scholar
  9. 9.
    Lü, J.H., Chen, G.R., Cheng, D.Z., Čelikovský, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12, 2917–2926 (2002) CrossRefMATHGoogle Scholar
  10. 10.
    Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Cafagna, D., Grassi, G.: New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring. Int. J. Bifurc. Chaos 13, 2889–2903 (2003) CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Li, Y.X., Chen, G.R., Tang, W.K.S.: Controlling a unified chaotic system to hyperchaotic. IEEE Trans. Circuits Syst. II 52, 204–207 (2005) CrossRefGoogle Scholar
  13. 13.
    Chen, Z.Q., Yang, Y., Qi, G.Y., Yuan, Z.Z.: A novel hyperchaos system only with one equilibrium. Phys. Lett. A 360, 696–701 (2007) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Gao, T.G., Chen, G.R., Chen, Z.Q., Cang, S.J.: The generation and circuit implementation of a new hyperchaos based upon Lorenz system. Phys. Lett. A 361, 78–86 (2007) CrossRefMATHGoogle Scholar
  15. 15.
    Qi, G.Y., Van Wyk, M.A., Van Wyk, B.J., Chen, G.R.: On a new hyperchaotic system. Phys. Lett. A 372, 124–136 (2008) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Qi, G.Y., Van Wyk, M.A., Van Wyk, B.J., Chen, G.R.: A new hyperchaotic system and its implementation. Chaos Solitons Fractals 40, 2544–2549 (2009) CrossRefGoogle Scholar
  17. 17.
    Wu, W.J., Chen, Z.Q., Yuan, Z.Z.: The evolution of a novel four-dimensional autonomous system: among 3-torus, limit cycle, 2-torus, chaos and hyperchaos. Chaos Solitons Fractals 39, 2340–2356 (2009) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wang, J.Z., Chen, Z.Q., Yuan, Z.Z.: The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system. Chin. Phys. 15, 1216–1225 (2006) CrossRefGoogle Scholar
  19. 19.
    Qi, G.Y., Chen, G.R., Du, S.Z., Chen, Z.Q., Yuan, Z.Z.: Analysis of a new chaotic system. Phys. A 352, 295–308 (2005) Google Scholar
  20. 20.
    Sparrow, C.: The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors. Springer, New York (1982) Google Scholar
  21. 21.
    Ueta, T., Chen, G.R.: Bifurcation analysis of Chen’s equation. Int. J. Bifurc. Chaos 10, 1917–1931 (2000) MathSciNetGoogle Scholar
  22. 22.
    Gao, Q., Ma, J.H.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58, 209–216 (2009) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Feigenbaum, M.J.: Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19, 25–52 (1978) CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A.: Critical exponents for crisis-induced intermittency. Phys. Rev. A 36, 5365–5380 (1987) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971) CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Yanchuk, S., Kapitaniak, T.: Chaos-hyperchaos transition in coupled Rössler systems. Phys. Lett. A 290, 139–144 (2001) CrossRefMATHGoogle Scholar
  28. 28.
    Zhou, Q., Chen, Z.Q., Yuan, Z.Z.: Blowout bifurcation and chaos–hyperchaos transition in five-dimensional continuous autonomous systems. Chaos Solitons Fractals 40, 1012–1020 (2009) CrossRefGoogle Scholar
  29. 29.
    Wolf, A., Swift, J., Swinney, H., John, A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985) MathSciNetMATHGoogle Scholar
  30. 30.
    Perez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995) CrossRefGoogle Scholar
  31. 31.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of AutomationNankai UniversityTianjinP.R. China

Personalised recommendations