Advertisement

Nonlinear Dynamics

, Volume 60, Issue 4, pp 479–487 | Cite as

Adaptive feedback control and synchronization of non-identical chaotic fractional order systems

  • Zaid M. OdibatEmail author
Original Paper

Abstract

This paper addresses the reliable synchronization problem between two non-identical chaotic fractional order systems. In this work, we present an adaptive feedback control scheme for the synchronization of two coupled chaotic fractional order systems with different fractional orders. Based on the stability results of linear fractional order systems and Laplace transform theory, using the master-slave synchronization scheme, sufficient conditions for chaos synchronization are derived. The designed controller ensures that fractional order chaotic oscillators that have non-identical fractional orders can be synchronized with suitable feedback controller applied to the response system. Numerical simulations are performed to assess the performance of the proposed adaptive controller in synchronizing chaotic systems.

Chaos synchronization Fractional order system Caputo fractional derivative Stability Feedback control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, G., Yu, X.: Chaos Control: Theory and Applications. Springer, Berlin (2003) zbMATHGoogle Scholar
  2. 2.
    Yamada, T., Fujisaka, H.: Stability theory of synchronized motion in coupled-oscillator systems. Progr. Theor. Phys. 70, 1240–1248 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Pecora, L.M., Carrol, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aziz-Alaoui, M.A.: Synchronization of chaos. In: Encyclopedia of Mathematical Physics, pp. 213–226 (2006) Google Scholar
  6. 6.
    Petráš, I.: A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38(1), 140–147 (2008) CrossRefGoogle Scholar
  7. 7.
    Ge, Z.M., Ou, C.Y.: Chaos in a fractional order modified Duffing system. Chaos Solitons Fractals 34(2), 262–291 (2007) zbMATHCrossRefGoogle Scholar
  8. 8.
    Hartley, T., Lorenzo, C., Qammer, H.: Chaos in a fractional order Chua’s system. IEEE Trans. CAS-I 42, 485–490 (1995) CrossRefGoogle Scholar
  9. 9.
    Li, C., Chen, G.: Chaos and hyperchaos in fractional order Rössler equations. Physica A 341, 55–61 (2004) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2), 443–450 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22(3), 549–554 (2004) zbMATHCrossRefGoogle Scholar
  12. 12.
    Lu, J.G., Chen, G.: A note on the fractional-order Chen system. Chaos Solitons Fractals 27(3), 685–688 (2006) zbMATHCrossRefGoogle Scholar
  13. 13.
    Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101 (2003) CrossRefGoogle Scholar
  14. 14.
    Arneodo, A., Coullet, P., Spiegel, E., Tresser, C.: Asymptotic chaos. Physica D 14(3), 327–347 (1985) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodos systems. Chaos Solitons Fractals 26(4), 1125–1133 (2005) zbMATHCrossRefGoogle Scholar
  16. 16.
    Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lü system. Physica A 353, 61–72 (2005) CrossRefGoogle Scholar
  17. 17.
    Sheu, L.-J., Chen, H.-K., Chen, J.-H., Tam, L.-M., Chen, W.-C., Lin, K.-T., Kang, Y.: Chaos in the Newton-Leipnik system with fractional order. Chaos Solitons Fractals 36(1), 98–103 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tam, L.M., Si Tou, W.M.: Parametric study of the fractional-order Chen-Lee system. Chaos Solitons Fractals 37(3), 817–826 (2008) CrossRefGoogle Scholar
  19. 19.
    Li, C., Zhou, T.: Synchronization in fractional-order differential systems. Physica D 212(1–2), 111–125 (2005) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Gao, X., Yu, J.: Synchronization of two coupled fractional-order chaotic oscillators. Chaos Solitons Fractals 26(1), 519–525 (2005) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Lu, J.G.: Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Chaos Solitons Fractals 27(2), 519–525 (2006) zbMATHCrossRefGoogle Scholar
  22. 22.
    Zhou, S., Li, H., Zhu, Z., Li, C.: Chaos control and synchronization in a fractional neuron network system. Chaos Solitons Fractals 36(4), 973–984 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Peng, G.: Synchronization of fractional order chaotic systems. Phys. Lett. A 363(5–6), 426–432 (2007) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M.: Chaos in a new system with fractional order. Chaos Solitons Fractals 31(5), 1203–1212 (2007) CrossRefGoogle Scholar
  25. 25.
    Yan, J., Li, C.: On chaos synchronization of fractional differential equations. Chaos Solitons Fractals 32(2), 725–735 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Li, C., Yan, J.: The synchronization of three fractional differential systems. Chaos Solitons Fractals 32(2), 751–757 (2007) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Zhu, H., Zhou, S., He, Z.: Chaos synchronization of the fractional-order Chen’s system. Chaos Solitons Fractals 41(5), 2733–2740 (2009) CrossRefGoogle Scholar
  28. 28.
    Wang, J., Xiong, X., Zhang, Y.: Extending synchronization scheme to chaotic fractional-order Chen systems. Physica A 370(2), 279–285 (2006) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360(2), 171–185 (2006) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Wu, X., Li, J., Chen, G.J.: Chaos in the fractional order unified system and its synchronization. J. Franklin Inst. 345(4), 392–401 (2008) zbMATHCrossRefGoogle Scholar
  31. 31.
    Yu, Y., Li, H.: The synchronization of fractional-order Rössler hyperchaotic systems. Physica A 387(5–6), 1393–1403 (2008) CrossRefGoogle Scholar
  32. 32.
    Zhu, H., Zhou, S., Zhang, J.: Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons Fractals 39(4), 1595–1603 (2009) CrossRefGoogle Scholar
  33. 33.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) zbMATHGoogle Scholar
  34. 34.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) zbMATHGoogle Scholar
  35. 35.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000) zbMATHGoogle Scholar
  36. 36.
    Gorenflo, R., Mainardi, F.: Fractional calculus: Integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus. Springer, New York (1997) Google Scholar
  37. 37.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Part II. J. R. Astron. Soc. 13, 529–539 (1967) Google Scholar
  38. 38.
    Matignon, D.: Stability results of fractional differential equations with applications to control processing. In: Proceeding of IMACS, IEEE-SMC, pp. 963–968. Lille, France (1996) Google Scholar
  39. 39.
    Deng, W., Li, C., Lü, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007) zbMATHCrossRefGoogle Scholar
  40. 40.
    Ahmed, E., El-Sayed, A.M., El-Saka, H.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325(1), 542–553 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Tavazoei, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79(5), 1566–1576 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Chen, C., Ueta, T.: Yet another chaotic attractor. I. J. Bifurc. Chaos 9(7), 1465–1466 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Physica D 237, 2628–2637 (2008) zbMATHMathSciNetGoogle Scholar
  44. 44.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of Science and TechnologyUniversity of Le HavreLe Havre CedexFrance

Personalised recommendations