Advertisement

Nonlinear Dynamics

, Volume 60, Issue 3, pp 217–229 | Cite as

Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres

  • Robert L. JacksonEmail author
  • Itzhak Green
  • Dan B. Marghitu
Original Paper

Abstract

The current work presents a different methodology for modeling the impact between elasto-plastic spheres. Recent finite element results modeling the static deformation of an elasto-plastic sphere are used in conjunction with equations for the variation of kinetic energy to obtain predictions for the coefficient of restitution. A model is also needed to predict the residual deformation of the sphere during rebound, or unloading, of which several are available and compared in this work. The model predicts that a significant amount of energy will be dissipated in the form of plastic deformation such that as the speed at initial impact increases, the coefficient of restitution decreases. This work also derives a new equation for the initial critical speed which causes initial plastic deformation in the sphere that is different than that shown in previously derived equations and is strongly dependant on Poisson’s Ratio. For impacts occurring above this speed, the coefficient of restitution will be less than a value of one. This work also compares the predictions between several models that make significantly different predictions. The results of the current model also compare well with some existing experimental data. Empirical fits to the results are provided for use as a tool to predict the coefficient of restitution.

Keywords

Nonlinear force Contact force Impact Elasto-plastic deformation Coefficient of restitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diepart, C.P.: Modelling of shot peening residual stresses—practical applications. Mater. Sci. Forum 163-6(2), 457–464 (1994) CrossRefGoogle Scholar
  2. 2.
    Eltobgy, M.S., Ng, E., Elbestawi, M.A.: Three-dimensional elastoplastic finite element model for residual stresses in the shot peening process. Proc. Inst. Mech. Eng., B J. Eng. Manuf. 218(11), 1471–1481 (2004) CrossRefGoogle Scholar
  3. 3.
    Peikenkamp, K.: Modelling of processes of impact in sports. J. Biomech. 22(10), 1069 (1989) CrossRefGoogle Scholar
  4. 4.
    Bowen, C.: Shaping the future of sports equipment. Mater. World 12(5), 24–26 (2004) Google Scholar
  5. 5.
    Yasaka, T., Hanada, T., Hirayama, H.: Low-velocity projectile impact on spacecraft. Acta Astronaut. 47(10), 763–770 (2000) CrossRefGoogle Scholar
  6. 6.
    Deutschen, N.R., Bowers, E.J., Lankford, J.W.: ASCC: the impact of a silver bullet. AT&T Tech. J. 75(1), 24–34 (1996) Google Scholar
  7. 7.
    Chang, W.R., Ling, F.F.: Normal impact model of rough surfaces. ASME J. Tribol. 114, 439–447 (1992) CrossRefGoogle Scholar
  8. 8.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966) CrossRefGoogle Scholar
  9. 9.
    Bogy, D.B., Stanley, H.M., Donovan, M., Cha, E.: Some critical tribological issues in contact and near-contact recording. Santa Clara, CA (1993) Google Scholar
  10. 10.
    Poon, C.Y., Bhushan, B.: Nano-asperity contact analysis and surface optimization for magnetic head slider/disk contact. Wear 202(1), 83–98 (1996) CrossRefGoogle Scholar
  11. 11.
    Weidong, H., Bogy, D.B., Honchi, M.: An asperity contact model for the slider air bearing. ASME J. Tribol. 122(2), 436–443 (2000) CrossRefGoogle Scholar
  12. 12.
    Green, I.: A transient dynamic analysis of mechanical seals including asperity contact and face deformation. Tribol. Trans. 45(3), 284–293 (2002) CrossRefGoogle Scholar
  13. 13.
    Sochting, S., Sherrington, I., Lewis, S.D., Roberts, E.W.: An evaluation of the effect of simulated launch vibration on the friction performance and lubrication of ball bearings for space applications. Wear 260(11–12), 1190–1202 (2006) CrossRefGoogle Scholar
  14. 14.
    Qiang, Y., Watanabe, K., Tsurusawa, T., Shiratori, M., Kakino, M., Fujiwara, N.: The examination of the drop impact test method. In: The Ninth Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (IEEE Cat. No. 04CH37543), Las Vegas, NV, USA. IEEE Press, New York (2004) Google Scholar
  15. 15.
    Wong, E.H., Lim, C.T., Field, J.E., Tan, V.B.C., Shim, V.P.W., Lim, K.M., Seah, S.K.W.: Tackling the drop impact reliability of electronic packaging. In: ASME International Electronic Packaging Technical Conference and Exhibition, Haui, HI (2003) Google Scholar
  16. 16.
    Marghitu, D.B.: Impact of a planar flexible bar with geometrical discontinuities of the first kind. Phil. Trans. R. Soc. Lond. A 359, 2595–2608 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. ASME J. Tribol. 109(2), 257–263 (1987) CrossRefGoogle Scholar
  18. 18.
    Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact. ASME J. Tribol. 127(2), 343–354 (2005) CrossRefGoogle Scholar
  19. 19.
    Yang, J., Komvopoulos, K.: Impact of a rigid sphere on an elastic homogeneous half-space. ASME J. Tribol. 127(2), 325–330 (2005) CrossRefGoogle Scholar
  20. 20.
    Thornton, C.: Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. J. Appl. Mech. 64(2), 383–386 (1997) zbMATHCrossRefGoogle Scholar
  21. 21.
    Wu, C.-Y., Li, L.-Y., Thornton, C.: Energy dissipation during normal impact of elastic and elastic-plastic spheres. Int. J. Impact Eng. 32(1–4), 593–604 (2005) CrossRefGoogle Scholar
  22. 22.
    Li, L.Y., Wu, C.Y., Thornton, C.: A theoretical model for the contact of elastoplastic bodies. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 216(4), 421–431 (2002) CrossRefGoogle Scholar
  23. 23.
    Weir, G., Tallon, S.: The coefficient of restitution for normal incident, low velocity particle impacts. Chem. Eng. Sci. 60(13), 3637 (2005) CrossRefGoogle Scholar
  24. 24.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) zbMATHGoogle Scholar
  25. 25.
    Vu-Quoc, L., Zhang, X.: An elastoplastic contact force-displacement model in the normal direction: displacement-driven version. Proc. R. Soc. Lond. A 455(1991), 4013–4044 (1999) zbMATHCrossRefGoogle Scholar
  26. 26.
    Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1951) zbMATHGoogle Scholar
  27. 27.
    Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. ASME J. Appl. Mech. 69(5), 657–662 (2002) zbMATHCrossRefGoogle Scholar
  28. 28.
    Green, I.: Poisson ratio effects and critical values in spherical and cylindrical Hertzian contacts. Int. J. Appl. Mech. Eng. 10(3), 451–462 (2005) Google Scholar
  29. 29.
    Quicksall, J.J., Jackson, R.L., Green, I.: Elasto-plastic hemispherical contact models for various mechanical properties. Proc. Inst. Mech. Eng., J J. Eng. Trib. 218(4), 313–322 (2004) CrossRefGoogle Scholar
  30. 30.
    Chaudhri, M.M., Hutchings, I.M., Makin, P.L.: Plastic compression of spheres. Philos. Mag. 49(4), 493–503 (1984) CrossRefGoogle Scholar
  31. 31.
    Johnson, K.L.: An experimental determination of the contact stresses between plastically deformed cylinders and spheres. In: Engineering Plasticity. Cambridge University Press, Cambridge (1968) Google Scholar
  32. 32.
    Zhao, Y., Maletta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. ASME J. Tribol. 122(1), 86–93 (2000) CrossRefGoogle Scholar
  33. 33.
    Wu, C.Y., Li, L.Y., Thornton, C.: Rebound behaviour of spheres for plastic impacts. Int. J. Impact Eng. 28, 929–946 (2003) CrossRefGoogle Scholar
  34. 34.
    Etsion, I., Kligerman, Y., Kadin, Y.: Unloading of an elastic-plastic loaded spherical contact. Int. J. Solids Struct. 42(13), 3716–3729 (2005) zbMATHCrossRefGoogle Scholar
  35. 35.
    Jackson, R.L., Chusoipin, I., Green, I.: A finite element study of the residual stress and strain formation in spherical contacts. ASME J. Tribol. 127(3), 484–493 (2005) CrossRefGoogle Scholar
  36. 36.
    Kharaz, A.H., Gorham, D.A.: A study of the restitution coefficient in elastic-plastic impact. Philos. Mag. Lett. 80(8), 549–559 (2000) CrossRefGoogle Scholar
  37. 37.
    Shankar, S., Mayuram, M.M.: Effect of strain hardening in elastic-plastic transition behavior in a hemisphere in contact with a rigid flat. Int. J. Solids Struct. 45(10), 3009–3020 (2008) zbMATHCrossRefGoogle Scholar
  38. 38.
    Jones, N.: Structural Impact. Cambridge University Press, Cambridge (1989) Google Scholar
  39. 39.
    Minamoto, H., Seifried, R., Eberhard, P., Toyoda, J., Kawamura, S.: Influence of strain rate sensitivity on multibody impact. In: Proceedings of the 56th Tokai Branch Regular Meeting of the Japan Society of Mechanical Engineers, 073-1(2007-3), pp. 51–52 (2007) (in Japanese) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Robert L. Jackson
    • 1
    Email author
  • Itzhak Green
    • 2
  • Dan B. Marghitu
    • 1
  1. 1.Department of Mechanical EngineeringAuburn UniversityAuburnUSA
  2. 2.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations