Nonlinear Dynamics

, Volume 60, Issue 1–2, pp 193–205

Non-linear vibration of variable speed rotating viscoelastic beams

Original Paper


Non-linear vibration of a variable speed rotating beam is analyzed in this paper. The coupled longitudinal and bending vibration of a beam is studied and the governing equations of motion, using Hamilton’s principle, are derived. The solutions of the non-linear partial differential equations of motion are discretized to the time and position functions using the Galerkin method. The multiple scales method is then utilized to obtain the first-order approximate solution. The exact first-order solution is determined for both the stationary and non-stationary rotating speeds. A very close agreement is achieved between the simulation results obtained by the numerical integration method and the first-order exact solution one. The parameter sensitivity study is carried out and the effect of different parameters including the hub radius, structural damping, acceleration, and the deceleration rates on the vibration amplitude is investigated.


Non-linear vibration Viscoelastic beam Rotating beam Variable speed Multiple scales method Galerkin method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249, 147–164 (2002) CrossRefGoogle Scholar
  2. 2.
    Chung, J., Jung, D., Yoo, H.H.: Stability analysis for the flapwise motion of a cantilever beam with rotary oscillation. J. Sound Vib. 273, 1047–1062 (2004) CrossRefGoogle Scholar
  3. 3.
    Yoo, H.H., Lee, S.H., Shin, S.H.: Flapwise bending vibration analysis of rotating multi-layered composite beams. J. Sound Vib. 286, 745–761 (2005) CrossRefGoogle Scholar
  4. 4.
    Lin, S.M., Leen, S.Y.: Prediction of vibration and instability of rotating damped beams with an elastically restrained root. Int. J. Mech. Sci. 46, 1173–1194 (2004) MATHCrossRefGoogle Scholar
  5. 5.
    Lin, C.Y., Chen, L.W.: Dynamic stability of a rotating beam with a constrained damping layer. J. Sound Vib. 267, 209–225 (2003) CrossRefGoogle Scholar
  6. 6.
    Fung, E.H.K., Yau, D.T.W.: Vibration characteristics of a rotating flexible arm with ACLD treatment. J. Sound Vib. 269, 165–182 (2004) CrossRefGoogle Scholar
  7. 7.
    Hosseini, S.A.A., Khadem, S.E.: Vibration and reliability of a rotating beam with random properties under random excitation. Int. J. Mech. Sci. 49(12), 1377–1388 (2007) Google Scholar
  8. 8.
    Dasa, S.K., Rayb, P.C., Pohit, G.: Free vibration analysis of a rotating beam with non-linear spring and mass system. J. Sound Vib. 301, 165–188 (2007) CrossRefGoogle Scholar
  9. 9.
    Wei, K., Meng, G., Zhou, S., Liu, J.: Vibration control of variable speed/acceleration rotating beams using smart materials. J. Sound Vib. 298, 1150–1158 (2006) CrossRefGoogle Scholar
  10. 10.
    Gunda, J.B., Ganguli, R.: Stiff-string basis functions for vibration analysis of high speed rotating beams. J. App. Mech. 75, 024502-1–024502-5 (2008) Google Scholar
  11. 11.
    Valverde, J., García-Vallejo, D.: Stability analysis of a sub-structured model of the rotating beam. Nonlinear Dyn. 55(4), 355–372 (2009) MATHCrossRefGoogle Scholar
  12. 12.
    Yang, J.B., Jiang, L.J., Chen, D.C.H.: Dynamic modelling and control of a rotating Euler–Bernoulli beam. J. Sound Vib. 274, 863–875 (2004) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lin, S.M.: PD control of a rotating smart beam with an elastic root. J. Sound Vib. 312, 109–124 (2008) CrossRefGoogle Scholar
  14. 14.
    Lee, S.-.Y., Sheu, J.-.J., Lin, S.-.M.: In-plane vibrational analysis of rotating curved beam with elastically restrained root. J. Sound Vib. 315, 1086–1102 (2008) CrossRefGoogle Scholar
  15. 15.
    Abolghasemi, M., Jalali, M.A.: Attractors of a rotating viscoelastic beam. Int. J. Non-Linear Mech. 38, 739–751 (2003) MATHCrossRefGoogle Scholar
  16. 16.
    Bhadbhade, V., Jalili, N., Mahmoodi, S.N.: A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J. Sound Vib. 311, 1305–1324 (2008) CrossRefGoogle Scholar
  17. 17.
    Luo, A.C.J., Han, R.P.S.: Analytical predictions of chaos in a non-linear rod. J. Sound Vib. 227, 523–544 (1999) CrossRefGoogle Scholar
  18. 18.
    Mahmoodi, S.N., Jalili, N., Khadem, S.E.: An experimental investigation of non-linear vibration and frequency response analysis of cantilever viscoelastic beams. J. Sound Vib. 311, 1409–1419 (2008) CrossRefGoogle Scholar
  19. 19.
    Mahmoodi, S.N., Khadem, S.E., Kokabi, M.: Non-linear free vibrations of Kelvin–Voigt visco-elastic beams. Int. J. Mech. Sci. 49, 722–732 (2007) CrossRefGoogle Scholar
  20. 20.
    Esmailzadeh, E., Jalali, M.A.: Non-linear oscillations of viscoelastic rectangular plates. Nonlinear Dyn. 18, 311–319 (1999) MATHCrossRefGoogle Scholar
  21. 21.
    Esmailzadeh, E., Shahani, A.R.: Longitudinal and rotational coupled vibration of viscoelastic bars with tip mass. Int. J. Non-Linear Mech. 34, 111–116 (1999) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-Interscience, New York (1979) MATHGoogle Scholar
  23. 23.
    Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley-Interscience, New York (2004) MATHCrossRefGoogle Scholar
  24. 24.
    Younesian, D., Esmailzadeh, E., Sedaghati, R.: Existence of periodic solutions for the generalized form of Mathieu equation. Nonlinear Dyn. 39, 345–353 (2005) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Railway EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Faculty of Engineering and Applied ScienceUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations