Nonlinear Dynamics

, Volume 59, Issue 4, pp 529–534 | Cite as

Reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems

Original Paper

Abstract

The problem of reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems is investigated in this paper. Firstly a reliable impulsive controller is designed by the impulsive control theory. Then, some sufficient conditions for reliable impulsive lag synchronization between the drive system and the response system are obtained. Numerical simulations are given to show the effectiveness of the proposed method.

Keywords

Chaotic systems Lag synchronization Impulsive synchronization Reliable control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pecoral, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, G.R., Yu, X.H.: On time-delay feedback control of chaotic systems. IEEE Trans. Circuit Syst. I 64, 767–772 (1999) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bainov, D.D., Simeonov, P.S.: Systems with Impulse Effect: Stability, Theory and Applications. Halsted Press, New York (1989) MATHGoogle Scholar
  4. 4.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989) MATHGoogle Scholar
  5. 5.
    Yang, T.: Impulsive Control Theory. Springer, Berlin (2001) MATHGoogle Scholar
  6. 6.
    Jiang, H.B., Yu, J.J., Zhou, C.G.: Robust fuzzy control of nonlinear fuzzy impulsive systems with time-varying delay. IET Control Theory Appl. 2, 654–661 (2008) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Yang, T., Yang, L.B., Yang, C.M.: Impulsive synchronization of Lorenz systems. Phys. Lett. A 226, 349–354 (1997) CrossRefGoogle Scholar
  8. 8.
    Sun, J.T., Zhang, Y.P., Wu, Q.D.: Impulsive control for the stabilization and synchronization of Lorenz systems. Phys. Lett. A 298, 153–160 (2002) CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Zhang, X.H., Liao, X.F., Li, C.D.: Impulsive control, complete and lag synchronization of unified chaotic system with continuous periodic switch. Chaos Solitons Fractals 26, 845–854 (2005) CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Jiang, H.B.: Hybrid adaptive and impulsive synchronization of uncertain complex dynamical networks by the generalized Barbalat’s lemma. IET Control Theory Appl. (2009). doi:10.1049/iet-cta.2008.0335 Google Scholar
  11. 11.
    Liu, B., Liu, X.Z.: Robust stability of uncertain discrete impulsive systems. IEEE Trans. Circuit Syst. II 54, 455–459 (2007) CrossRefGoogle Scholar
  12. 12.
    Zhang, H., Guan, Z.H., Feng, G.: Reliable dissipative control for stochastic impulsive systems. Automatica 44, 1004–1010 (2008) MathSciNetGoogle Scholar
  13. 13.
    MacFarlane, A.G.J.: Complex Variable Methods for Linear Multivariable Feedback Systems. Taylor & Francis, London (1980) Google Scholar
  14. 14.
    Veillette, R.J., Medanic, J.V., Perkins, W.R.: Design of reliable control systems. IEEE Trans. Autom. Control 37, 290–304 (1992) CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Chen, B., Liu, X.P.: Reliable control design of fuzzy dynamic systems with time-varying delay. Fuzzy Sets Syst. 146, 349–374 (2004) CrossRefMATHGoogle Scholar
  16. 16.
    Kuo, H.H., Hou, Y.Y., Yan, J.J., Liao, T.L.: Reliable synchronization of nonlinear chaotic systems. Math. Comput. Simul. 79, 1627–1635 (2009) CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Zhang, Y., Sun, J.: Impulsive robust fault-tolerant feedback control for chaotic Lur’e systems. Chaos Solitons Fractals 39, 1440–1446 (2009) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Li, C.D., Liao, X.F., Zhang, R.: A unified approach for impulsive lag synchronization of chaotic systems with time delay. Chaos Solitons Fractals 23, 1177–1184 (2005) MathSciNetMATHGoogle Scholar
  19. 19.
    Wang, D.X., Zhong, Y.L., Chen, S.H.: Lag synchronizing chaotic system based on a single controller. Commun. Nonlinear Sci. Numer. Simul. 13, 637–644 (2008) CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Lu, J.F.: Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 13, 1851–1859 (2008) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zheng, Y.A., Nian, Y.B., Liu, Z.R.: Impulsive control for the stabilization of discrete chaotic system. Chin. Phys. Lett. 19, 1251–1253 (2002) CrossRefGoogle Scholar
  22. 22.
    Zheng, Y.A., Nian, Y.B., Liu, Z.R.: Impulsive synchronization of discrete chaotic systems. Chin. Phys. Lett. 20, 199–201 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of ScienceJiangsu UniversityZhenjiangChina
  2. 2.School of MathematicsYancheng Teachers UniversityYanchengChina

Personalised recommendations