Nonlinear Dynamics

, Volume 59, Issue 3, pp 485–496

Global asymptotical stability and generalized synchronization of phase synchronous dynamical networks

Original Paper


This paper examines the global asymptotical stability of the phase synchronous dynamical networks composed by a class of nonlinear pendulum-like systems with multiple equilibria. Sufficient conditions for the determination of global asymptotical stability are given in terms of linear matrix inequalities (LMIs). Furthermore, a concept of generalized synchronization is introduced, and the criterion of which is proposed in a simple form. Those results are of particular convenience for networks that possess large numbers of nodes, and they can be used to discuss controller design problems as well. Numerical simulations and analytical results are in excellent agreement with each other.


Dynamical networks Multiple equilibria Global asymptotical stability Phase synchronization LMI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998) CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Wang, X.F.: Complex networks: topology, dynamics, and synchronization. Int. J. Bifurc. Chaos 5(12), 885–916 (2002) Google Scholar
  4. 4.
    Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 054101 (2002) CrossRefGoogle Scholar
  5. 5.
    Wu, C.W.: Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific, Singapore (2006) Google Scholar
  6. 6.
    Li, C.G., Chen, G.R.: Synchronization in general complex dynamical networks with coupling delays. Physica A 343, 263–277 (2004) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Wang, X.F., Chen, G.R.: Pinning control of scale-free networks. Physica A 310, 521–531 (2002) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Wang, X.F., Chen, G.R.: Synchronization in scale-free networks: robustness and fragility. IEEE Trans. CAS-1 49, 54–62 (2002) CrossRefGoogle Scholar
  9. 9.
    Liu, X., Wang, J.Z., Huang, L.: Global synchronization for a class of dynamical complex networks. Physica A 386, 543–556 (2007) CrossRefGoogle Scholar
  10. 10.
    Xu, S.Y., Yang, Y.: Synchronization for a class of complex dynamical networks with time-delay. Commun. Nonlinear Sci. Numer. Simul. 14, 3230–3238 (2009) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Leonov, G.A., Burkin, I.M., Shepeljavyi, A.I.: Frequency Methods in Oscillation Theory. Kluwer Academic, Dordrecht (1992) Google Scholar
  12. 12.
    Leonov, G.A., Reitmann, V., Smirnova, V.B.: Non-local methods for pendulum-like feedback systems. Teubner-Texte zur Mathematik Bd. 132, B.G., Teubner Stuttgart-Leipzig (1992) Google Scholar
  13. 13.
    Leonov, G.A., Ponomarenko, D.V., Smirnova, V.B.: Frequency-Domain Methods for Nonlinear Analysis. World Scientific, Singapore (1996) MATHGoogle Scholar
  14. 14.
    Rantzer, A.: On the Kalman–Yakubovich–Popov lemma. Syst. Control Lett. 28, 7–10 (1996) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Yang, Y., Huang, L.: H controller synthesis for pendulum-like systems. Syst. Control Lett. 50, 263–276 (2003) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Duan, Z.S., Wang, J.Z., Huang, L.: Criteria for dichotomy and gradient-like behavior of a class of nonlinear systems with multiple equilibria. Automatica 43, 1583–1589 (2007) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Yang, Y., Fu, R., Huang, L.: Robust analysis and synthesis for a class of uncertain nonlinear systems with multiple equilibria. Syst. Control Lett. 53, 89–105 (2004) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Duan, Z.S., Wang, J.Z., Huang, L.: Input and output coupled nonlinear systems. IEEE Trans. CAS-1 52(3), 567–575 (2007) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Yang, Y., Duan, Z.S., Huang, L.: Global convergence of a class of discrete-time interconnected pendulum-like systems. J. Optim. Theory Appl. 133, 257–273 (2007) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific, Singapore (2002) MATHGoogle Scholar
  21. 21.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge Univ. Press, Cambridge (1985) MATHGoogle Scholar
  22. 22.
    Wu, C.W.: Application of Kronecker products to the analysis of systems with uniform linear coupling. IEEE Trans. CAS-1 42(10), 775–778 (1995) CrossRefGoogle Scholar
  23. 23.
    Balakrishnan, V., Vandenberghe, L.: Semidefinite programming duality and linear time-invariant systems. IEEE Trans. Autom. Control. 48, 30–41 (2003) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Lu, P.L., Yang, Y., Li, Z.K., Huang, L.: Decentralized dynamic output feedback for globally asymptotic stabilization of a class of dynamic networks. Int. J. Control 81(7), 1054–1061 (2008) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Boyd, S., ELGhaoui, L., Feron, E., Balakrishnam, V.: Linear Matrix Inequalities in Systems and Control. SIAM, Philadelphia (1994) Google Scholar
  26. 26.
    Gardner, F.M.: Phaselock Techniques. Wiley, New York (1979) Google Scholar
  27. 27.
    Ware, K.M., Lee, H.S., Sodini, C.G.: A 200-mhz cmos phase-locked loop with dual phase detectors. IEEE J. Solid-State Circ. 24, 1560–1568 (1989) CrossRefGoogle Scholar
  28. 28.
    Abramovitch, D.Y.: Lyapunov redesign of analog phase-lock loops. IEEE Trans. Commun. 38, 2197–2202 (1990) CrossRefGoogle Scholar
  29. 29.
    Buckwalter, J., York, R.A.: Time delay considerations in high-frequency phase-locked loop. In: IEEE Radio Frequency Integrated Circuits Symposium, pp. 181–184 (2000) Google Scholar
  30. 30.
    Harb, B.A., Harb, A.M.: Chaos and bifurcation in a third-order phase locked loop. Chaos Soliton Fractals 19, 667–672 (2004) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.State Key Lab for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of EngineeringPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations