Nonlinear Dynamics

, 59:259 | Cite as

High-order synchronization of stick–slip process: experiments on spring–slider system

  • T. ChelidzeEmail author
  • O. Lursmanashvili
  • T. Matcharashvili
  • N. Varamashvili
  • N. Zhukova
  • E. Mepharidze
Original Paper


In the last years it has been shown that the synchronization and triggering of dynamic events by weak external forcing is ubiquitous and is observed in biological systems, lasers, electronic networks, etc. In the present paper, new experimental data on the phase synchronization in frictional system induced by a weak electromagnetic or mechanical periodic forcing are analyzed. For quantitative analysis of stick–slip time series, modern tools of nonlinear dynamics were used. Stick–slip events were identified by recording acoustic emissions, which accompany slip displacements. The spring–slider system in stick–slip regime is considered as a proxy of active tectonic fault, generating earthquakes.

The effect of high-order synchronization of stick–slip events by weak electromagnetic or mechanical periodic forcing, as well as the phenomenon of phase time delay of the synchronized

slip events behind the forcing phase, was discovered. These findings can help to find new regularities in seismic time series.


Stick–slip Periodical forcing nonlinear dynamics Acoustic emission High-order synchronization 


  1. 1.
    Abe, S., Suzuki, N.: Complex-network description of seismicity. Nonlinear Process. Geophys. 13, 145–150 (2006) Google Scholar
  2. 2.
    Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111, 1525–1548 (2002) CrossRefGoogle Scholar
  3. 3.
    Becker, T.W.: Deterministic chaos in the two-state-variable friction sliders and the effect of elastic interactions. In: Rundle, J.B., Turcotte, D.L., Klein, W. (eds.) Geocomplexity and the Physics of Earthquakes, pp. 5–26. American Geophysical Union, Washington (2000) Google Scholar
  4. 4.
    Beeler, N.M., Lockner, D.A.: Why earthquakes correlate weakly with the solid Earth tides: Effects of periodic stress on the rate and probability of earthquake occurrence. J. Geophys. Res. B 108, 2391–2405 (2003) CrossRefGoogle Scholar
  5. 5.
    Blekhman, I.I.: Synchronization in Science and Technology. ASME Press, New York (1988) Google Scholar
  6. 6.
    Brace, W.E., Byerlee, I.D.: Stick–slip as a mechanism for earthquakes. Science 153, 990–992 (1966) CrossRefGoogle Scholar
  7. 7.
    Bouissou, S., Petit, J., Barquins, M.: Experimental evidence of contact loss during stick–slip: Possible implications for seismic behavior. Tectonophysics 295, 341–350 (1998) CrossRefGoogle Scholar
  8. 8.
    Bureau, L., Baumberger, T., Caroli, C.: Shear response of a frictional influence to a normal load modulation. Phys. Rev. E 62, 6810–6820 (2000) CrossRefGoogle Scholar
  9. 9.
    Buttkus, B.: Spektralanalyse und Filtertheorie in der Angewandten Geophysik. Springer, Berlin (1991) Google Scholar
  10. 10.
    Chelidze, T., Matcharashvili, T.: Complexity of seismic process, measuring and applications—A review. Tectonophysics 431, 49–61 (2007) CrossRefGoogle Scholar
  11. 11.
    Chelidze, T., Lursmanashvili, O.: Electromagnetic and mechanical control of slip: Laboratory experiments with slider system. Nonlinear Process. Geophys. 20, 1–8 (2003) Google Scholar
  12. 12.
    Chelidze, T., Varamashvili, N., Devidze, M., Chelidze, Z., Chikhladze, V., Matcharashvili, T.: Laboratory study of electromagnetic initiation of slip. Ann. Geophys. 45, 587–599 (2002) Google Scholar
  13. 13.
    Chelidze, T., Gvelesiani, A., Varamashvili, N., Devidze, N., Chikchladze, V., Chelidze, Z., Elashvili, M.: Electromagnetic initiation of slip: Laboratory model. Acta Geophys. Pol. 52, 49–62 (2004) Google Scholar
  14. 14.
    Chelidze, T., Matcharashvili, T., Gogiashvili, J., Lursmanashvili, O., Devidze, M.: Phase synchronization of slip in laboratory slider system. Nonlinear Process. Geophys. 12, 1–8 (2005) Google Scholar
  15. 15.
    Chelidze, T., Lursmanashvili, O., Matcharashvili, T., Devidze, M.: Triggering and synchronization of stick–slip: Waiting times and frequency-energy distribution. Tectonophysics 424, 139–155 (2006) CrossRefGoogle Scholar
  16. 16.
    Dieterich, J.H.: Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res. B 84, 2161–2168 (1979) CrossRefGoogle Scholar
  17. 17.
    Grasso, J.-R.: Mechanics of seismic instabilities induced by the recovery of hydrocarbons. Pageoph 139, 507–534 (1992) CrossRefGoogle Scholar
  18. 18.
    Kanamori, H., Brodsky, E.E.: The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1496 (2004) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997) zbMATHGoogle Scholar
  20. 20.
    Kurz, J., Grosse, C.U., Reinhardtet, H.W.: Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics 43, 538–546 (2005) CrossRefGoogle Scholar
  21. 21.
    Maeda: A method for reading and checking phase times in autoprocessing system of seismic wave data. J. Seismol. Soc. Jpn. 38, 365–379 (1985) Google Scholar
  22. 22.
    Marwan, M.: Encounters with neighborhood. Ph.D. Thesis (2003) Google Scholar
  23. 23.
    Nikolaev, A.V. (ed.): Induced Seismicity. Nauka, Moscow (1994). p. 220 (in Russian) Google Scholar
  24. 24.
    Nikolaev, V.A.: Research of Lithospheric Stress State on the Basis of Correlation of Tidal Forces and Seismicity. OOO Anakharsis, Moscow (2003) (in Russian) Google Scholar
  25. 25.
    Pikovsky, A., Rosenblum, M.G., Kurths, J.: Synchronization: Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2003) Google Scholar
  26. 26.
    Ponomarev, A., Smirnov, V., Patonin, A., Stroganov, S., Kotlyar, T.: Modeling of transient processes in seismicity: Laboratory experiments. In: 31th General Assembly of the European Seismological Commission, Crete, 7–12 September 2008 Google Scholar
  27. 27.
    Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. B 88, 10359–10370 (1983) CrossRefGoogle Scholar
  28. 28.
    Quiroga, R., Quian Quiroga, R., Kraskov, A., Kreuz, T., Grassberger, P.: Performance of different synchronization measures in real data. Phys. Rev. E 65, 041903 (2002) CrossRefGoogle Scholar
  29. 29.
    Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998) CrossRefGoogle Scholar
  30. 30.
    Scholz, C.H.: Good tidings. Nature 425, 670–671 (2003) CrossRefGoogle Scholar
  31. 31.
    Simpson, D.: Seismicity changes associated with reservoir loading. Eng. Geol. 10, 123–150 (1976) CrossRefMathSciNetGoogle Scholar
  32. 32.
    Sobolev, G., Ponomarev, A., Koltsov, A., Smirnov, V.: Simulation of triggered earthquakes in the laboratory. Pageoph 147, 345–355 (1996) CrossRefGoogle Scholar
  33. 33.
    Tarasov, N.G., Tarasova, N.V., Avagimov, A.A., Zeigarnik, V.A.: The effect of high-power electromagnetic pulses on the seismicity of the Central Asia and Kazakhstan. Vulkanol. Seismol. 4–5, 152–160 (1999) (in Russian) Google Scholar
  34. 34.
    Varamashvili, N., Chelidze, T., Lursmanashvili, O.: Phase synchronization of slips by periodical (tangential and normal) mechanical forcing in the spring-slider model. Acta Geophys. 56, 357–371 (2009) CrossRefGoogle Scholar
  35. 35.
    Zbilut, J.P., Webber, C.L. Jr.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171, 199–203 (1992) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • T. Chelidze
    • 1
    Email author
  • O. Lursmanashvili
    • 1
  • T. Matcharashvili
    • 1
  • N. Varamashvili
    • 1
  • N. Zhukova
    • 1
  • E. Mepharidze
    • 1
  1. 1.M. Nodia Institute of GeophysicsTbilisiGeorgia

Personalised recommendations