Nonlinear Dynamics

, 58:431 | Cite as

Symbolics dynamics of elementary cellular automata rule 88

  • Fang-Fang Chen
  • Fang-Yue Chen
  • Guan-Rong Chen
  • Wei-Feng Jin
  • Lin Chen
Original Paper

Abstract

In this paper, the dynamical behaviors of elementary cellular automata (ECA) rule 88 are studied from the viewpoint of symbolic dynamics. Based on the results derived from the finite case, it is shown that there exist three different Bernoulli-measure subsystems of rule 88 in the space of bi-infinite symbolic sequences. The relationships of these three subsystems and the existence of fixed points are investigated, revealing that the union of them is not the global attractor of rule 88 under the bi-infinite case. Furthermore, the dynamical properties of topologically mixing and topological entropy of rule 88 are exploited on its subsystems. In addition, it is shown that rule 88, a member of Wolfram’s class II, possesses richer and more complicated dynamical behaviors in the space of bi-infinite sequences. Finally, it is noted that the method presented in this work is also applicable to study the dynamics of other ECA rules, especially the 112 Bernoulli-shift rules therein.

Keywords

Cellular automata Bernoulli shift Symbolic dynamics Topological entropy Transition matrix Chaos 

References

  1. 1.
    Blanchard, F., Glasner, E., Kolyada, S.: On Li-Yorke pairs. J. Reine Angew. Math. 547, 51–68 (2002) MATHMathSciNetGoogle Scholar
  2. 2.
    Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part III: Predicting the unpredictable. Int. J. Bifurc. Chaos 14, 3689–3820 (2004) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part IV: From Bernoulli shift to 1/f spectrum. Int. J. Bifurc. Chaos 15, 1045–1183 (2005) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part VI: From time-reversible attractors to the arrows of time. Int. J. Bifurc. Chaos 16(5), 1097–1373 (2006) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chua, L.O., Guan, J.B., Sbitnev, V.I., Jinwook, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part VII: Isles of Eden. Int. J. Bifurc. Chaos 17, 2839–3012 (2007) MATHCrossRefGoogle Scholar
  6. 6.
    Chua, L.O., Pazienza, G.E., Orzo, L., Sbitnev, V.I., Shin, J.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part IX: Quasi-Ergodicity. Int. J. Bifurc. Chaos 18(9), 2487–2642 (2008) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Guan, J.B., Shen, S.W., Tang, C.B., Chen, F.Y.: Extending Chua’s global equivalence theorem on Wolfram’s new kind of science. Int. J. Bifurc. Chaos 17, 4245–4259 (2007) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hedlund, G.A.: Endormorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 31, 320–375 (1969) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kitchens, B.: Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts. Springer, Berlin (1998) MATHGoogle Scholar
  10. 10.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (1990) MATHGoogle Scholar
  11. 11.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984) MathSciNetGoogle Scholar
  12. 12.
    Wolfram, S.: Theory and Application of Cellular Automata. World Scientific, Singapore (1986) Google Scholar
  13. 13.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002) MATHGoogle Scholar
  14. 14.
    Xiong, J.C., Young, Z.: Chaos Caused by a Topologically Mixing Map. In: Dynamical Systems and Related Topics. World Scientific, Singapore (1992) Google Scholar
  15. 15.
    Zhou, Z.L.: Symbolic Dynamics. Shanghai Scientific and Technological Education Publishing House, Shanghai (1997) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Fang-Fang Chen
    • 1
  • Fang-Yue Chen
    • 1
    • 2
  • Guan-Rong Chen
    • 3
  • Wei-Feng Jin
    • 1
  • Lin Chen
    • 1
  1. 1.Department of MathematicsZhejiang Normal UniversityJinhuaPeople’s Republic of China
  2. 2.School of ScienceHangzhou Dianzi UniversityHangzhouPeople’s Republic of China
  3. 3.Department of Electronic EngineeringCity University of Hong KongHong KongPeople’s Republic of China

Personalised recommendations