Nonlinear Dynamics

, 58:405 | Cite as

Nonlinear analysis of a simple model of temperature evolution in a satellite

  • José Gaite
  • Angel Sanz-Andrés
  • Isabel Pérez-Grande
Original Paper

Abstract

We analyze a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite’s temperature is analyzed by qualitative, perturbation and numerical methods, which prove that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.

Keywords

Spacecraft thermal control Nonlinear oscillations Perturbation methods 

References

  1. 1.
    Henderson, R.A.: Thermal control of spacecraft. In: Fortescue, P., Stark, J. (eds.) Spacecraft Systems Engineering, 2nd edn. Wiley, New York (1995) Google Scholar
  2. 2.
    Gilmore, G. (ed.): Spacecraft Thermal Control Handbook. Aerospace Press, El Segundo (2002) Google Scholar
  3. 3.
    Savage, C.J.: Thermal control of spacecraft. In: Fortescue, P., Stark, J., Swinerd, G. (eds.) Spacecraft Systems Engineering, 3rd edn. Wiley, New York (2003) Google Scholar
  4. 4.
    Oshima, K., Oshima, Y.: An analytical approach to the thermal design of spacecrafts. Rep. No. 419, Inst. of Space and Aeronautical Science of Tokyo (1968) Google Scholar
  5. 5.
    Arduini, C., Laneve, G., Folco, S.: Linearized techniques for solving the inverse problem in the satellite thermal control. Acta Astronaut. 43, 473–479 (1998) CrossRefGoogle Scholar
  6. 6.
    Tsai, J.-R.: Overview of satellite thermal analytical model. J. Spacecr. Rockets 41, 120–125 (2004) CrossRefGoogle Scholar
  7. 7.
    Gadalla, M.A.: Prediction of temperature variation in a rotating spacecraft in space environment. Appl. Therm. Eng. 25, 2379–2397 (2005) CrossRefGoogle Scholar
  8. 8.
    Pérez-Grande, I., Sanz-Andrés, A., Guerra, C., Alonso, G.: Analytical study of the thermal behaviour and stability of a small satellite. Appl. Therm. Eng. 29, 1507–1513 (2009) CrossRefGoogle Scholar
  9. 9.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979) MATHGoogle Scholar
  10. 10.
    Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Dover, New York (1987) Google Scholar
  11. 11.
    Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973) MATHGoogle Scholar
  12. 12.
    Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Pure and Applied Mathematics. Academic Press, San Diego (1974) MATHGoogle Scholar
  13. 13.
    Drazin, P.G.: Nonlinear Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1992) Google Scholar
  14. 14.
    Otter, R.: The number of trees. Ann. Math. 49, 583–599 (1948) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Bell, J.P., Burris, S.N., Yeats, K.A.: Counting rooted trees: the universal law t(n)∼C ρ n n −3/2. Electron. J. Comb. 13, R63 (2006) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • José Gaite
    • 1
  • Angel Sanz-Andrés
    • 1
  • Isabel Pérez-Grande
    • 1
  1. 1.IDR/UPM, ETSI AeronáuticosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations