Nonlinear Dynamics

, Volume 58, Issue 1–2, pp 85–106 | Cite as

Simulation and stability analysis of impacting systems with complete chattering

Original Paper


This paper considers dynamical systems that are derived from mechanical systems with impacts. In particular we will focus on chattering—accumulation of impacts—for which local discontinuity mappings will be derived. We will first show how to use these mappings in simulation schemes, and secondly how the mappings are used to calculate the stability of limit cycles with chattering by solving the first variational equations.


Nonlinear dynamics Impacting systems Chattering Stability analysis Bifurcations Discontinuity mappings Numerical methods Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential–Algebraic Equations. SIAM, Philadelphia (1998) MATHGoogle Scholar
  2. 2.
    Beyn, W.-J., Champneys, A.R., Doedel, E., Govaerts, W., Kuznetsov, Yu.A., Sandstede, B.: Numerical continuation, and computation of normal forms. In: Handbook of Dynamical Systems, vol. 2, pp. 149–219. Elsevier Science, Amsterdam (2002). Chap. 4 CrossRefGoogle Scholar
  3. 3.
    Blakeborough, A.: An analytical approach of church bells to earthquake excitation. J. Earthq. Eng. 5, 69–92 (2001) CrossRefGoogle Scholar
  4. 4.
    Brogliato, B.: Impacts in Mechanical Systems—Analysis and Modelling. Lecture Notes in Physics, vol. 551. Springer, Berlin (2000) MATHCrossRefGoogle Scholar
  5. 5.
    Budd, C.J., Dux, F.: Chattering and related behaviour in impact oscillators. Phil. Trans. R. Soc. Lond. A 347, 365–389 (1994) MATHCrossRefGoogle Scholar
  6. 6.
    Budd, C.J., Piiroinen, P.T.: Corner bifurcations in non-smoothly forced impact oscillators. Physica D 220, 127–145 (2006) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cunha, F.B., Pagano, D.J., Moreno, U.F.: Sliding bifurcations in planar variable structure systems. IEEE Trans. Circuit Syst. 50(8), 1129–1134 (2003) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dankowicz, H., Piiroinen, P.T.: Exploiting discontinuities for stabilization of recurrent motions. Dyn. Syst. 17, 317–342 (2002) MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dercole, F., Kuznetsov, Yu.A.: SlideCont: An Auto97 driver for sliding bifurcation analysis. Department of Mathematics, Universiteit Utrecht, The Netherlands (2002) Google Scholar
  10. 10.
    di Bernardo, M., Budd, C.J., Champneys, A.R.: Grazing, skipping and sliding: analysis of the non-smooth dynamics of the DC/DC buck converter. Nonlinearity 11, 858–890 (1998) MathSciNetGoogle Scholar
  11. 11.
    di Bernardo, M., Johansson, K.H., Vasca, F.: Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations. Int. J. Bifurc. Chaos 11(4), 1121–1140 (2001) CrossRefGoogle Scholar
  12. 12.
    di Bernardo, M., Kowalczyk, P., Nordmark, A.: Bifurcations of dynamical systems with sliding: derivation of normal-form mappings. Physica D 170, 175–205 (2002) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., Nordmark, A.B., Olivar, G., Piiroinen, P.T.: Bifurcations in non-smooth dynamical systems. SIAM Rev. 50(4), 629–701 (2007) CrossRefMathSciNetGoogle Scholar
  14. 14.
    di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise Smooth Dynamical Systems—Theory and Applications. Springer, London (2008) MATHGoogle Scholar
  15. 15.
    Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Yu.A., Sandstede, B., Wang, X.-J.: Auto97: Continuation and bifurcation software for ordinary differential equations (with HomCont). Computer Science, Concordia University, Montreal, Canada. (1997)
  16. 16.
    Fredriksson, M.H., Borglund, D., Nordmark, A.B.: Experiments on the onset of impacting motion using a pipe conveying fluid. Nonlinear Dyn. 19, 261–271 (1999) MATHCrossRefGoogle Scholar
  17. 17.
    Glocker, C.: Set-Valued Force Laws. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001) MATHGoogle Scholar
  18. 18.
    Halse, C.K., Wilson, R.E., di Bernardo, M., Homer, M.E.: Coexisting solutions and bifurcations in mechanical oscillators with backlash. J. Sound Vib. 305, 854–885 (2007) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Jerrelind, J., Stensson, A.: Braille printer dynamics. In: ASME Design Engineering Technical Conferences, DETC99/VIB-8032 (1999) Google Scholar
  20. 20.
    Kowalczyk, P., di Bernardo, M., Champneys, A.R., Hogan, S.J., Homer, M., Kuznetsov, Yu.A., Nordmark, A.B., Piiroinen, P.T.: Two-parameter non-smooth bifurcations of limit cycle: classification and open problems. Int. J. Bifurc. Chaos 16(3), 601–629 (2006) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004) MATHGoogle Scholar
  22. 22.
    Nordmark, A.B.: Non-periodic motion caused by grazing incidence in impact oscillators. J. Sound Vib. 2, 279–297 (1991) CrossRefGoogle Scholar
  23. 23.
    Nordmark, A.B.: Universal limit mapping in grazing bifurcations. Phys. Rev. E 55, 266–270 (1997) CrossRefGoogle Scholar
  24. 24.
    Nordmark, A.B.: Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators. Nonlinearity 14, 1517–1542 (2001) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Nordmark, A.B.: Discontinuity mappings for vector fields with higher-order continuity. Dyn. Syst. 17, 359–376 (2002) MATHMathSciNetGoogle Scholar
  26. 26.
    Nordmark, A.B.: On chattering bifurcations in 1 d.o.f. impact oscillator models. Manuscript in preparation Google Scholar
  27. 27.
    Nordmark, A.B., Kowalczyk, P.: A codimension-two scenario of sliding solutions in grazing-sliding bifurcations. Nonlinearity 19, 1–26 (2006) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Osirio, G., di Bernardo, M., Santini, S.: Chattering and complex behavior of a can-follower system. In: ENOC-2005, Fifth Euromech Nonlinear Dynamics Conference (2005) Google Scholar
  29. 29.
    Peterka, F.: Part 1: Theoretical analysis of n-multiple (1/n)-impact solutions. CSAV Acta Tech. 19, 462–473 (1974) Google Scholar
  30. 30.
    Peterka, F.: Results of analogue computer modelling of the motion. Part 2. CSAV Acta Tech. 19, 569–580 (1974) MATHGoogle Scholar
  31. 31.
    Pfeiffer, F., Glocker, Ch.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996) MATHCrossRefGoogle Scholar
  32. 32.
    Piiroinen, P.T., Dankowicz, H.J.: Low-cost control of repetitive gait in passive bipedal walkers. Int. J. Bifurc. Chaos 15(6), 1959–1973 (2005) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Shaw, S.W.: On the dynamic response of a system with dry friction. J. Sound Vib. 108(2), 305–325 (1986) CrossRefGoogle Scholar
  35. 35.
    Shaw, S.W., Holmes, P.J.: Periodically forced linear oscillator with impacts: chaos and long-periodic motions. Phys. Rev. Lett. 51, 623–626 (1983) CrossRefMathSciNetGoogle Scholar
  36. 36.
    Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  37. 37.
    Wagg, D.J., Karpodinis, G., Bishop, S.R.: An experimental study of the impulse response of a vibro-impacting cantilever beam. J. Sound Vib. 228, 242–264 (1999) CrossRefGoogle Scholar
  38. 38.
    Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid system. Int. J. Robust Nonlinear Control 11(5), 435–451 (2001) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of MechanicsRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of Applied Mathematics, School of Mathematics, Statistics and Applied MathematicsNational University of Ireland, GalwayGalwayIreland

Personalised recommendations