Nonlinear Dynamics

, 57:25 | Cite as

Generalized projective synchronization of the fractional-order Chen hyperchaotic system

  • Xiangjun Wu
  • Yang Lu
Original Paper


In this paper, we numerically investigate the hyperchaotic behaviors in the fractional-order Chen hyperchaotic systems. By utilizing the fractional calculus techniques, we find that hyperchaos exists in the fractional-order Chen hyperchaotic system with the order less than 4. We found that the lowest order for hyperchaos to have in this system is 3.72. Our results are validated by the existence of two positive Lyapunov exponents. The generalized projective synchronization method is also presented for synchronizing the fractional-order Chen hyperchaotic systems. The present technique is based on the Laplace transform theory. This simple and theoretically rigorous synchronization approach enables synchronization of fractional-order hyperchaotic systems to be achieved and does not require the computation of the conditional Lyapunov exponents. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.


Fractional order system Chen hyperchaotic system Generalized projective synchronization 


  1. 1.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) zbMATHGoogle Scholar
  2. 2.
    Hifer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2001) Google Scholar
  3. 3.
    Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984). doi: 10.1109/TAC.1984.1103551 zbMATHCrossRefGoogle Scholar
  5. 5.
    Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971) Google Scholar
  6. 6.
    Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971) Google Scholar
  7. 7.
    Oustaloup, A., Levron, F., Nanot, F., Mathieu, B.: Frequency band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst.-I 47, 25–40 (2000) CrossRefGoogle Scholar
  8. 8.
    Chen, Y.Q., Moore, K.: Discretization schemes for fractional order differentiators and integrators. IEEE Trans. Circuits Syst.-I 49, 363–367 (2000) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29, 201–233 (2002). doi: 10.1023/A:1016534921583 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hwang, C., Leu, J.F., Tsay, S.Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47, 625–631 (2002). doi: 10.1109/9.995039 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst.-I 42, 485–490 (1995) CrossRefGoogle Scholar
  12. 12.
    Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Chaos in a fractional order Duffing system. In: Proceedings of European Conference on Circuit Theory and Design, Budapest, pp. 1259–1262 (1997) Google Scholar
  13. 13.
    Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003). doi: 10.1103/PhysRevLett.91.034101 CrossRefGoogle Scholar
  14. 14.
    Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–351 (2003). doi: 10.1016/S0960-0779(02)00438-1 zbMATHCrossRefGoogle Scholar
  15. 15.
    Ahmad, W.M., Harb, A.M.: On nonlinear control design for autonomous chaotic systems of integer and fractional orders. Chaos Solitons Fractals 18, 693–701 (2003). doi: 10.1016/S0960-0779(02)00644-6 zbMATHCrossRefGoogle Scholar
  16. 16.
    Li, C.G., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004). doi: 10.1016/j.physa.2004.04.113 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004). doi: 10.1016/j.chaos.2004.02.013 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Li, C.G., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22, 549–554 (2004). doi: 10.1016/j.chaos.2004.02.035 zbMATHCrossRefGoogle Scholar
  19. 19.
    Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002). doi: 10.1016/S0370-1573(02)00331-9 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990). doi: 10.1103/PhysRevLett.64.821 CrossRefMathSciNetGoogle Scholar
  21. 21.
    Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with application to communication. Phys. Rev. Lett. 74, 5028–5031 (1995). doi: 10.1103/PhysRevLett.74.5028 CrossRefGoogle Scholar
  22. 22.
    Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996) zbMATHGoogle Scholar
  23. 23.
    Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998) zbMATHGoogle Scholar
  24. 24.
    Wu, X.J.: A new chaotic communication scheme based on adaptive synchronization. Chaos 16, 043118 (2006). doi: 10.1063/1.2401058 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Rosenblum, M.G., Pikovsky, A.S., Kurtz, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996). doi: 10.1103/PhysRevLett.76.1804 CrossRefGoogle Scholar
  26. 26.
    Pikovsky, A.S., Rosenlum, M.G., Osipov, G., Kurtz, J.: Phase synchronization of chaotic oscillators by external driving. Physica D 104, 219–238 (1997). doi: 10.1016/S0167-2789(96)00301-6 zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997). doi: 10.1103/PhysRevLett.78.4193 CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Sun, J.: Chaotic synchronization and anti-synchronization based on suitable separation. Phys. Lett. A 330, 442–447 (2004). doi: 10.1016/j.physleta.2004.08.023 zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic system. Phys. Rev. Lett. 82, 3042–3045 (1999). doi: 10.1103/PhysRevLett.82.3042 CrossRefGoogle Scholar
  30. 30.
    Xu, D., Li, Z.: Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems. Chaos 11, 439–442 (2001). doi: 10.1063/1.1380370 zbMATHCrossRefGoogle Scholar
  31. 31.
    Xu, D., Chee, C.Y., Li, C.P.: A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions. Chaos Solitons Fractals 22, 175–180 (2004). doi: 10.1016/j.chaos.2004.01.012 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Li, G.H.: Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32, 1786–1790 (2007). doi: 10.1016/j.chaos.2005.12.009 zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hung, M.L., Yan, J.J., Liao, T.L.: Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input. Chaos Solitons Fractals 35, 181–187 (2008). doi: 10.1016/j.chaos.2006.05.050 CrossRefMathSciNetGoogle Scholar
  34. 34.
    Li, C.G., Liao, X.F., Yu, J.B.: Synchronization of fractional order chaotic systems. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68, 067203 (2003). doi: 10.1103/PhysRevE.68.067203 Google Scholar
  35. 35.
    Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26, 1125–1133 (2005). doi: 10.1016/j.chaos.2005.02.023. zbMATHCrossRefGoogle Scholar
  36. 36.
    Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360, 171–185 (2006). doi: 10.1016/j.physa.2005.06.078 CrossRefMathSciNetGoogle Scholar
  37. 37.
    Li, C., Yan, J.: The synchronization of three fractional differential systems. Chaos Solitons Fractals 32, 751–757 (2007). doi: 10.1016/j.chaos.2005.11.020 CrossRefMathSciNetGoogle Scholar
  38. 38.
    Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387, 57–70 (2008). doi: 10.1016/j.physa.2007.08.039 CrossRefMathSciNetGoogle Scholar
  39. 39.
    Ge, Z.M., Ou, C.Y.: Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals 35, 705–717 (2008). doi: 10.1016/j.chaos.2006.05.101 CrossRefGoogle Scholar
  40. 40.
    Yu, Y., Li, H.X.: The synchronization of fractional-order Rössler hyperchaotic systems. Physica A 387, 1393–1403 (2008). doi: 10.1016/j.physa.2007.10.052 CrossRefGoogle Scholar
  41. 41.
    Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 51, 980–994 (1995) doi: 10.1103/PhysRevE.51.980 Google Scholar
  42. 42.
    Kocarev, L., Parlitz, U.: Generalized synchronization. predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76, 1816–1819 (1996). doi: 10.1103/PhysRevLett.76.1816 Google Scholar
  43. 43.
    Wang, Y.W., Guan, Z.H.: Generalized synchronization of continuous chaotic system. Chaos Solitons Fractals 27, 97–101 (2006). doi: 10.1016/j.chaos.2004.12.038 zbMATHCrossRefGoogle Scholar
  44. 44.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. R. Astron. Soc. 13, 529–539 (1967). Google Scholar
  45. 45.
    Samko, S.G., Klibas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993) zbMATHGoogle Scholar
  46. 46.
    Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999). doi: 10.1142/S0218127499001024 zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Li, Y.X., Tang, W.K.S., Chen, G.R.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 15, 3367–3375 (2005). doi: 10.1142/S0218127405013988 CrossRefGoogle Scholar
  48. 48.
    Yan, Z.Y.: Controlling hyperchaos in the new hyperchaotic Chen system. Appl. Math. Comput. 168, 1239–1250 (2005). doi: 10.1016/j.amc.2004.10.016 zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron Trans. Numer. Anal. 5, 1–6 (1997) zbMATHMathSciNetGoogle Scholar
  50. 50.
    Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002). doi: 10.1006/jmaa.2000.7194 zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002). doi: 10.1023/A:1016592219341 zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Wolf, A., Swinney, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985). doi: 10.1016/0167-2789(85)90011-9 zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Muth, E.J.: Transform Methods with Applications to Engineering and Operations Research. Prentice-Hall, Englewood Cliffs (1977) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Computing CenterHenan UniversityKaifengChina

Personalised recommendations