Nonlinear Dynamics

, Volume 56, Issue 1–2, pp 193–198 | Cite as

Global sliding mode control and application in chaotic systems

  • Leipo LiuEmail author
  • Zhengzhi Han
  • Wenlin Li
Original Paper


This paper is concerned with the stabilization problem for a class of nonlinear systems. Using the global sliding mode control approach, a novel robust control law is established to make the state of system stable and to improve the robustness and the stability of system. A new reaching law is introduced to reduce the chattering. Finally, the method is applied to chaotic systems and an example of the chaotic system is given to illustrate the advantage of the proposed method.


Nonlinear systems Global sliding mode control Robustness Chattering Chaotic systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stipanovic, D.M., Siljak, D.D.: Robust stability and stabilization of discrete-time nonlinear systems. Int. J. Control 74, 873–879 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Sun, J., Liu, G.P.: State feedback and output feedback control of a class of nonlinear systems with delayed measurements. Nonlinear Anal. 67, 1623–1636 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Nguang, S.K.: Robust nonlinear H output feedback control. IEEE Trans. Automat. Contr. 41, 1003–1007 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Daniel, W.C.H., Lu, G.: Robust stabilization for a class of discrete-time nonlinear systems via output feedback: The united LMI approach. Int. J. Control 76, 105–115 (2003) zbMATHCrossRefGoogle Scholar
  5. 5.
    Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40, 2–22 (1993) CrossRefGoogle Scholar
  6. 6.
    Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, New York (1991) zbMATHGoogle Scholar
  7. 7.
    Hung, L.C., Chung, H.Y.: Decoupled control using neural network-based sliding-mode controller for nonlinear systems. Expert Syst. Appl. 32, 1168–1182 (2007) CrossRefGoogle Scholar
  8. 8.
    Coradini, M.L., Orlando, G.: Linear unstable plants with saturating actuators: Robust stabilization by a time varying sliding surface. Automatica 43, 88–94 (2007) CrossRefGoogle Scholar
  9. 9.
    Niu, Y., Daniel, W.C.H., Wang, X.: Sliding mode control for Ito stochastic systems with Markovian switching. Automatica 43, 1784–1790 (2007) zbMATHCrossRefGoogle Scholar
  10. 10.
    Wu, T.Z., Wang, J.D., Juang, Y.T.: Decoupled integral variable structure control for MIMO systems. J. Franklin Inst. 344, 1006–1020 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nazzal, J.M., Natsheh, A.N.: Chaos control using sliding mode theory. Chaos Solitons Fractals 33, 695–702 (2007) CrossRefGoogle Scholar
  12. 12.
    Yau, H.T.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos Solitons Fractals 22, 341–347 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chang, J.F., Hung, M.L., Yang, Y.S., Liao, T.L., Yan, J.J.: Controlling chaos of the family of Rossler systems using sliding mode control. Chaos Solitons Fractals 37, 609–622 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chiang, T.Y., Hung, M.L., Yan, J.J., Yang, Y.S., Chang, J.F.: Sliding mode control for uncertain unified chaotic systems with input nonlinearity. Chaos Solitons Fractals 34, 437–442 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wang, H., Han, Z., Xie, Q., Zhang, W.: Sliding mode control for chaotic systems based on LMI. Commun. Nonlinear Sci. Simul. (2008). doi: 10.1016/j.cnsns.2007.12.006 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Electrical and Information EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.College of Mathematics and Information ScienceHenan Normal UniversityXinxiangChina

Personalised recommendations