Advertisement

Nonlinear Dynamics

, 56:121 | Cite as

On stability, persistence, and Hopf bifurcation in fractional order dynamical systems

  • H. A. El-Saka
  • E. Ahmed
  • M. I. Shehata
  • A. M. A. El-Sayed
Original Paper

Abstract

This is a preliminary study about the bifurcation phenomenon in fractional order dynamical systems. Persistence of some continuous time fractional order differential equations is studied. A numerical example for Hopf-type bifurcation in a fractional order system is given, hence we propose a modification of the conditions of Hopf bifurcation. Local stability of some biologically motivated functional equations is investigated.

Keywords

Fractional order Bifurcation 

References

  1. 1.
    Ahmed, E., El-Sayed, A.M.A., El-Mesiry, E.M., El-Saka, H.A.A.: Numerical solution for the fractional replicator equation. Int. J. Mod. Phys. 16(7), 1–9 (2005) Google Scholar
  2. 2.
    Ahmed, E., El-Sayed, A., El-Saka, H.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems. Phys. Lett. A 358, 1 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems. Phys. Lett. A 358, 1 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ahmed, E., El-Sayed, A., El-Saka, H.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Diethelm, K.: Predictor–corrector strategies for single- and multi-term fractional differential equations. In: Lipitakis, E.A. (ed.) Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and its Applications, pp. 117–122. LEA Press, Athens (2002) [Zbl. Math. 1028.65081] Google Scholar
  6. 6.
    Diethelm, K., Ford, N.J.: The numerical solution of linear and non-linear Fractional differential equations involving Fractional derivatives several of several orders. Numerical Analysis Report 379, Manchester Center for Numerical Computational Mathematics Google Scholar
  7. 7.
    Diethelm, K., Freed, A.: On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity. In: Keil, F., Mackens, W., Voß, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II—Computational Fluid Dynamics, Reaction Engineering, and Molecular properties, pp. 217–224. Springer, Heidelberg (1999) Google Scholar
  8. 8.
    Diethelm, K., Freed, A.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. In: Heinzel, S., Plesser, T. (eds.) Forschung und wissenschaftliches Rechnen 1998. Gesellschaft für Wisseschaftliche Datenverarbeitung, pp. 57–71. Vandenhoeck & Ruprecht, Göttingen (1999) Google Scholar
  9. 9.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Edelstein-Keshet, L.: Introduction to Mathematical Biology. Siam Classics in Appl. Math. SIAM, Philadelphia (2004) Google Scholar
  12. 12.
    El-Mesiry, E.M., El-Sayed, A.M.A., El-Saka, H.A.A.: Numerical methods for multi-term fractional (arbitrary) orders differential equations. Appl. Math. Comput. 160(3), 683–699 (2005) zbMATHMathSciNetGoogle Scholar
  13. 13.
    El-Sayed, A.M.A., El-Mesiry, E.M., El-Saka, H.A.A.: Numerical solution for multi-term fractional (arbitrary) orders differential equations. Comput. Appl. Math. 23(1), 33–54 (2004) CrossRefMathSciNetGoogle Scholar
  14. 14.
    El-Sayed, A., El-Mesiry, A., EL-Saka, H.: On the fractional-order logistic equation. Appl. Math. Lett. 20, 817–823 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge Univ. Press, Cambridge (1998) zbMATHGoogle Scholar
  16. 16.
    Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Eng. in Sys. Appl., vol. 2, p. 963. Lille, France (1996) Google Scholar
  17. 17.
    Rocco, A., West, B.J.: Fractional calculus and the evolution of fractal phenomena. Physica A 265, 535 (1999) CrossRefGoogle Scholar
  18. 18.
    Smith, J.B.: A technical report of complex system. ArXiv:CS0303020 (2003)
  19. 19.
    Stanislavsky, A.A.: Memory effects and macroscopic manifestation of randomness. Phys. Rev. E 61, 4752 (2000) Google Scholar
  20. 20.
  21. 21.
    Zhao, J., Jiang, J.: Average conditions for permanence and extinction in non-autonomous Lotka-Volterra system. J. Math. Anal. Appl. 299, 663 (2004) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H. A. El-Saka
    • 1
  • E. Ahmed
    • 2
  • M. I. Shehata
    • 2
  • A. M. A. El-Sayed
    • 3
  1. 1.Mathematics Department, Faculty of ScienceMansoura UniversityNew DamiettaEgypt
  2. 2.Mathematics Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  3. 3.Mathematics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations