Advertisement

Nonlinear Dynamics

, Volume 55, Issue 1–2, pp 95–112 | Cite as

Hopf bifurcation analysis of a four-neuron network with multiple time delays

  • Xiao-Chen Mao
  • Hai-Yan HuEmail author
Original Paper

Abstract

This paper reveals the dynamics of a neural network of four neurons with multiple time delays and a short-cut connection through a combined study of theoretical analysis, numerical simulations, and experiments. The first step of the study is to derive the sufficient conditions for the stability and instability of the network equilibrium, and the second step is to determine the properties of the periodic response bifurcating from a Hopf bifurcation of the network equilibrium on the basis of the normal form and the center manifold reduction. Afterwards, the study turns to the validation of theoretical results through numerical simulations and a circuit experiment. The case studies show that both numerical simulations and circuit experiment get a nice agreement with theoretical results.

Keywords

Neural networks Multiple time delays Hopf bifurcation Periodic response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldi, P., Atiya, A.F.: How delays affect neural dynamics and learning. IEEE Trans. Neural Netw. 5, 610–621 (1994) CrossRefGoogle Scholar
  2. 2.
    Wei, J., Velarde, M.G.: Bifurcation analysis and existence of periodic solutions in a simple neural network with delays. Chaos 14(3), 940–953 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Guo, S.J., Huang, L.H.: Hopf bifurcating periodic orbits in a ring of neurons with delays. Physica D 183, 19–44 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Zhou, S.B., Liao, X.F., Yu, J.B., Wong, K.W.: Chaos and its synchronization in two-neuron systems with discrete delays. Chaos Solitons Fractals 21, 133–142 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Li, C.G., Chen, G.R., Liao, X.F., Yu, J.B.: Hopf bifurcation and chaos in a single inertial neuron model with time delay. Eur. Phys. J. B 41, 337–343 (2004) CrossRefGoogle Scholar
  6. 6.
    Wei, J., Ruan, S.: Stability and bifurcation in a neural network model with two delays. Physica D 130, 255–272 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Olien, L., Bélair, J.: Bifurcation, stability and monotonicity properties of a delayed neural network model. Physica D 102, 349–363 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Shayer, L.P., Campbell, S.A.: Stability bifurcation and multi-stability in a system of two coupled neurons with multiple time delays. SIAM 61(2), 673–700 (2000) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Giannakopoulos, F., Zapp, A.: Bifurcations in a planar system of differential delay equations modeling neural activity. Physica D 159, 215–232 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Li, S.W., Liao, X.F., Li, C.G., Wong, K.W.: Hopf bifurcation of a two-neuron network with different discrete time delays. Int. J. Bifurc. Chaos 15, 1589–1601 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Huang, C.X., He, Y.G., Huang, L.H., Yuan, Z.H.: Hopf bifurcation analysis of two neurons with three delays. Nonlinear Anal.: Real World Appl. 8, 903–921 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Huang, C.X., Huang, L.H., Feng, J.F., Nai, M.Y., He, Y.G.: Hopf bifurcation analysis for a two-neuron network with four delays. Chaos Solitons Fractals 34, 795–812 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Xu, X.: Local and global Hopf bifurcation in a two-neuron network with multiple delays. Int. J. Bifurc. Chaos (2008, in press) Google Scholar
  14. 14.
    Campbell, S.A., Ncube, I., Wu, J.: Multi-stability and stable asynchronous periodic oscillations in a multiple delayed neural system. Physica D 214, 101–119 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gupta, P.D., Majee, N.C., Roy, A.B.: Stability, bifurcation and global existence of a Hopf-bifurcating periodic solution for a class of three-neuron delayed network models. Nonlinear Anal.: Theory Methods Appl. 67, 2934–2954 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Liao, X.F., Guo, S.T., Li, C.D.: Stability and bifurcation analysis in tri-neuron model with time delay. Nonlinear Dyn. 49, 319–345 (2007) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Yan, X.P.: Bifurcation analysis in a simplified tri-neuron BAM network model with multiple delays. Nonlinear Anal.: Real World Appl. 9, 963–976 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Yu, W., Cao, J.: Stability and Hopf bifurcation analysis on a four-neuron BAM neural network with time delays. Phys. Lett. A 351, 64–78 (2006) CrossRefGoogle Scholar
  19. 19.
    Yuan, Y.: Dynamics in a delayed neural network. Chaos Solitons Fractals 33, 443–454 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mao, X.C., Hu, H.Y.: Stability and Hopf bifurcation of a delayed network of four neurons and a short-cut connection. Int. J. Bifurc. Chaos (2008, in press) Google Scholar
  21. 21.
    Campbell, S.A., Edwards, R., van den Driessche, P.: Delayed coupling between two neural network loops. SIAM 65(1), 316–335 (2004) zbMATHMathSciNetGoogle Scholar
  22. 22.
    Wei, J., Yuan, Y.: Synchronized Hopf bifurcation analysis in a neural network model with delays. J. Math. Anal. Appl. 312, 205–229 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    van den Driessche, P., Wu, J.H., Zou, X.F.: Stabilization role of inhibitory self-connections in a delayed neural network. Physica D 150, 84–90 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Olgac, N., Ergenc, A., Sipahi, R.: Delay scheduling: a new concept for stabilization in multiple delay systems. J. Vib. Control 11, 1159–1172 (2005) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998) CrossRefGoogle Scholar
  26. 26.
    Strogatz, S.H.: Exploring complex networks. Nature 410(8), 268–276 (2001) CrossRefGoogle Scholar
  27. 27.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Xu, X., Hu, H.Y., Wang, H.L.: Dynamics of a two dimensional delayed small-world network under delayed feedback control. Int. J. Bifurc. Chaos 16, 3257–3273 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Wang, Z.H., Hu, H.Y.: Stability switches of dynamic systems with unknown parameters. J. Sound and Vibration 233, 215–233 (2000) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Wang, H.L., Hu, H.Y.: Bifurcation analysis of a delayed dynamic system via method of multiple scales and shooting technique. Int. J. Bifurc. Chaos 15(2), 425–450 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981) Google Scholar
  32. 32.
    Stepan, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Longman, Harlow (1989) zbMATHGoogle Scholar
  33. 33.
    Marcus, C.M.: Dynamics of Analog Neural Networks. Harvard University, Cambridge (1990) Google Scholar
  34. 34.
    Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Heidelberg (2002) zbMATHGoogle Scholar
  35. 35.
    Stepan, G., Haller, G.: Quasiperiodic oscillations in robot dynamics. Nonlinear Dyn. 8, 513–528 (1995) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.MOE Key Lab of Structural Mechanics and Control for AircraftNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations