Nonlinear Dynamics

, Volume 53, Issue 1–2, pp 89–106 | Cite as

Nonlinear vibration of shallow cables with semiactive tuned mass damper

Original Paper

Abstract

The nonlinear vibration of shallow cables, equipped with a semiactive control device is considered in this paper. The control device is represented by a tuned mass damper with a variable out-of-plane inclination. A suitable control algorithm is designed in order to regulate the inclination of the device and to dampen the spatial cable vibrations. Numerical simulations are conducted under free spatial oscillations through a nonlinear finite element model, solved in two different computational environments. A harmonic analysis, in the region of the primary resonance, is also performed through a control-oriented nonlinear Galerkin model, including detuning effects due to the cable slackening.

Keywords

Bifurcations Galerkin approach Numerical simulations Structural cables Tuned mass damper 

Abbreviations

x, y, z, s

Reference axes and curvilinear abscissa

t, τ, χ

Time, normalized time and normalized abscissa

C0, C1

Cable static and varied configurations

u, v, w

Cable displacements functions

d, l

Cable sag and cable span

E, S

Elastic modulus and cross section

H

Cable horizontal reaction

μ, cv, cw

Mass and damping coefficients per unit length

py, pz

Distributed in-plane and out-of-plane loads

\(\bar{e}\)

Constant Lagrangian measure of strain

ωiv, ωiw

In-plane and out-of-plane natural circular frequencies

piv, piw, Ω

Normalized modal loads and circular frequency

qiv, qiw

In-plane and out-of-plane modal coordinates

nv, nw

Number of in-plane and out-of-plane modes retained in the Galerkin models

a0ij, a1i, a2j

Coefficients of the Galerkin models

a3i, b1j, b2ij, b3k

Coefficients of the Galerkin models

ξiv, ξiw

Damping coefficients in the Galerkin models

U, ΔU

Vectors of nodal displacements in FEM models

\(\sigma,\ \tilde{\sigma}\)

Error and error tolerance in the FEM procedure

n

Number of unconstrained nodes in the FEM models

m, c, k

Mass, damping coefficient and stiffness of the TMD

ξd, ωd

Damping ratio and circular frequency of the TMD

ι, ω

Imaginary unit and complex circular frequency

β

Fundamental complex eigenvalue

ω0

First in-plane circular frequency of a cable without sag

α, ε

In-plane and out-of-plane TMD inclinations

x0, r

Position and local axis of the TMD

R

Length of the TMD

η0, V

Cable and TMD displacements

ξ, ζ

Control forces

γ

Mass ratio of the cable-TMD system

\(\tilde{\alpha}\)

Scalar parameter of the time integration scheme

gε1, gε2

Control gains

ψ, ν, λ2

Nondimensional cable parameters

fiv, fiw

Cable natural frequencies

vm, wm

Cable mid-span displacements

v1q, w3q

Cable observed displacements

αC, βC

Rayleigh damping matrix parameters

\(\bar{q}_{1}^{w},\ \bar{q}_{2}^{w}\)

Estimates of the first two out-of-plane modal amplitudes

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rega, G.: Nonlinear vibrations of suspended cables, part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004) CrossRefGoogle Scholar
  2. 2.
    Rega, G.: Nonlinear vibrations of suspended cables, part II: deterministic phenomena. Appl. Mech. Rev. 57, 479–514 (2004) CrossRefGoogle Scholar
  3. 3.
    Larsen, J.W., Nielsen, S.R.K.: Non-linear stochastic response of a shallow cable. Int. J. Non-Linear Mech. 41, 327–344 (2004) CrossRefGoogle Scholar
  4. 4.
    Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27, 233–250 (1992) MATHCrossRefGoogle Scholar
  5. 5.
    Nayfeh, A.H., Arafat, H.N., Chin, C.M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002) MATHMathSciNetGoogle Scholar
  6. 6.
    Benedettini, F., Rega, G., Alaggio, R.: Nonlinear oscillations of a four-degree of freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995) CrossRefGoogle Scholar
  7. 7.
    Luongo, A., Rega, G., Vestroni, F.: Parametric analysis of large amplitude free vibrations of a suspended cable. Int. J. Solids Struct. 20, 95–105 (1984) CrossRefGoogle Scholar
  8. 8.
    Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of suspended cables. Proc. R. Soc. Lond. 341, 299–315 (1974) CrossRefGoogle Scholar
  9. 9.
    Arafat, H.N., Nayfeh, A.H.: Nonlinear responses of suspended cables to primary resonance excitations. J. Sound Vib. 266, 325–354 (2003) CrossRefGoogle Scholar
  10. 10.
    Desai, Y.M., Popplewell, N., Shah, A.H., Buragohain, D.N.: Geometric nonlinear analysis of cable supported structures. Comput. Struct. 29(6), 1001–1006 (1988) MATHCrossRefGoogle Scholar
  11. 11.
    Desai, Y.M., Popplewell, N., Shah, A.H.: Finite element modeling of transmission line galloping. Comput. Struct. 57, 407–420 (1995) MATHCrossRefGoogle Scholar
  12. 12.
    Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Comput. Methods Appl. Mech. Eng. 193, 69–85 (2004) MATHCrossRefGoogle Scholar
  13. 13.
    Cluni, F.: Studio del comportamento dinamico dei cavi strutturali: modelli numerici e prove sperimentali. Dissertation, University of Perugia (2004) (in Italian) Google Scholar
  14. 14.
    Cluni, F., Gusella, V., Ubertini, F.: A parametric investigation of wind-induced cable fatigue. Eng. Struct. (2007). doi:  10.1016/j.engstruct.2007.02.010
  15. 15.
    Canbolat, H., Dawson, D., Rahn, C.D., Nagarkatti, S.: Adaptive boundary control of out-of-plane cable vibration. ASME J. Appl. Mech. 65, 963–969 (1998) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Susumpow, T., Fujino, Y.: Active control of multimodal cable vibrations by axial support motion. Earthq. Eng. Struct. Dyn. 5, 283–292 (1995) Google Scholar
  17. 17.
    Gattulli, V., Pasca, M., Vestroni, F.: Nonlinear oscillations of a nonresonant cable under in-plane excitation with a longitudinal control. Nonlinear Dyn. 14(2), 139–156 (1997) MATHCrossRefGoogle Scholar
  18. 18.
    Alaggio, R., Gattulli, V., Potenza, F.: Experimental validation of longitudinal active control strategy for cable oscillations. In: Proceedings of the 9th Italian Conference on Wind Engineering (INVENTO), Pescara (2006) Google Scholar
  19. 19.
    Gattuli, V., Vestroni, F.: Nonlinear strategies for longitudinal control in the stabilization of an oscillating suspended cable. Dyn. Control 10(4), 359–374 (2000) CrossRefGoogle Scholar
  20. 20.
    Xu, Y.L., Yu, Z.: Non-linear vibration of cable-damper system, part I: formulation. J. Sound Vib. 225, 447–463 (1999) CrossRefGoogle Scholar
  21. 21.
    Xu, Y.L., Yu, Z.: Non-linear vibration of cable-damper system, part II: application and verification. J. Sound Vib. 225, 465–481 (1999) CrossRefGoogle Scholar
  22. 22.
    Zhou, Q., Nielsen, S.R.K., Qu, W.L.: Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers. J. Sound Vib. 296, 1–22 (2006) CrossRefGoogle Scholar
  23. 23.
    Claren, R., Diana, G.: Vibrazioni dei conduttori. Energ. Elettr. 11, 677–688 (1966) (in Italian) Google Scholar
  24. 24.
    Gattulli, V., Lepidi, M., Luongo, A.: Controllo con una massa accordata dell’instabilità aeroelastica di un cavo sospeso. In: Proceedings of the 16th Italian Conference on Theoretic and Applied Mechanics (AIMETA) (2003) (in Italian) Google Scholar
  25. 25.
    Pacheko, B.M., Fujino, Y., Sulekh, A.: Estimation curve for modal damping in stay cables with viscous dampers. ASCE J. Struct. Eng. 119(6), 1961–1979 (1990) CrossRefGoogle Scholar
  26. 26.
    Wu, W.J., Cai, C.S.: Experimental study of magnetorheological dampers and application to cable vibration control. J. Vib. Control 12(1), 67–82 (2006) CrossRefGoogle Scholar
  27. 27.
    Abdel-Rohman, M., Spencer, B.F.: Control of wind-induced nonlinear oscillations in suspended cables. Nonlinear Dyn. 37, 341–355 (2004) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Markiewikz, M.: Optimum dynamic characteristics of stockbridge dampers for dead-end spans. J. Sound Vib. 188, 243–256 (1995) CrossRefGoogle Scholar
  29. 29.
    Cai, C.S., Wu, W.J., Shi, X.M.: Cable vibration reduction with a hung-on TMD system, part I: theoretical study. J. Vib. Control 12(7), 801–814 (2006) CrossRefMATHGoogle Scholar
  30. 30.
    Cai, C.S., Wu, W.J., Shi, X.M.: Cable vibration reduction with a hung-on TMD system, part II: parametric study. J. Vib. Control 12(8), 881–899 (2006) CrossRefMATHGoogle Scholar
  31. 31.
    Wu, W.J., Cai, C.S.: Cable vibration control with a magnetorheological fluid based tuned mass damper. In: Proceedings of the 10th Biennial ASCE Aerospace Division International Conference on Engineering, Construction, and Operations in Challenging Environments, League City/Houston, TX, USA, 5–8 March 2006 Google Scholar
  32. 32.
    Casciati, F., Magonette, G., Marazzi, F.: Technology of Semiactive Devices and Applications in Vibration Mitigation. Wiley, Chichester (2006) Google Scholar
  33. 33.
    Casciati, F., Ubertini, F.: Control of cables nonlinear vibrations under turbulent wind action. In: Deodatis G., Spanos P. (eds.) Computational stochastic mechanics, 5th International Conference on Computational Stochastic Mechanics, Rodos, June 2006, pp. 169–178. Millpress, Rotterdam (2007) Google Scholar
  34. 34.
    ANSYS Inc.: ANSYS and CivilFEM 9.0 User Manual. Madrid (2005) Google Scholar
  35. 35.
    The Mathworks Inc.: Matlab and Simulink. Natick (2002) Google Scholar
  36. 36.
    Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977) CrossRefGoogle Scholar
  37. 37.
    Doedel, E.J., Paffenroth, R.C., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B.E., Sandstede, B., Wang, X.: AUTO2000: continuation and bifurcation software for ordinary differential equations. Available online from http://indy.cs.concordia.ca/auto/

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Structural MechanicsUniversity of PaviaPaviaItaly

Personalised recommendations