Advertisement

Nonlinear Dynamics

, Volume 51, Issue 4, pp 595–605 | Cite as

Numerical solution of stiff systems from nonlinear dynamics using single-term Haar wavelet series

  • N. M. Bujurke
  • C. S. Salimath
  • S. C. Shiralashetti
Original Paper

Abstract

The paper presents single-term Haar wavelet series (STHWS) approach to the solution of nonlinear stiff differential equations arising in nonlinear dynamics. The properties of STHWS are given. The method of implementation is discussed. Numerical solutions of some model equations are investigated for their stiffness and stability and solutions are obtained to demonstrate the suitability and applicability of the method. The results in the form of block-pulse and discrete solutions are given for typical nonlinear stiff systems. As compared with the TR BDF2 method of Shampine and Gill’s method, the STHWS turns out to be more effective in its ability to solve systems ranging from mildly to highly stiff equations and is free from stability constraints.

Keyword

STHWS Operational matrix Block-pulse and discrete solutions Gill’s method Nonlinear stiff systems Fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steinfield, J.I., Fransisco, J.S., Hase, W.L.: Chemical Kinetics and Dynamics. Prentice-Hall, Englewood Cliffs, NJ (1999)Google Scholar
  2. 2.
    Carrol, J.: A matricial exponentially fitted scheme for the numerical solution of stiff initial value problems. Comput. Math. Appl. 26, 57–64 (1993)CrossRefGoogle Scholar
  3. 3.
    Pavlov, B.V., Rodionova, O.E.: Numerical solution of systems of linear ordinary differential equations with constant coefficients. Comput. Math. Phys. 34, 535–539 (1994)MathSciNetGoogle Scholar
  4. 4.
    Hsiao, C.H.: Haar wavelet approach to linear stiff systems. Math. Comput. Simul. 64, 561–567 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, C.F., Hsiao, C.H.: Haar wavelet method for solving lumped and distributed parameter systems. IEE Proc. Control Theory Appl. 144(1), 87–94 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Rao, G.P., Palanisamy, K.R., Srinivasan, T.: Extension of computation beyond the limit of initial normal interval in Walsh series analysis of dynamical systems. IEEE Trans. Autom. Control 25, 317–319 (1980)zbMATHCrossRefGoogle Scholar
  7. 7.
    Balachandran, K., Muragesan, K.: Analysis of different systems via single-term Walsh series method. Int. J. Comput. Math. 33, 171–179 (1990)CrossRefGoogle Scholar
  8. 8.
    Sepehrian, B., Razzaghi, M.: Solution of time-varying singular nonlinear systems by single-term Walsh series. Math. Prob. Eng. 3, 129–136 (2003)CrossRefGoogle Scholar
  9. 9.
    Shampine, L.F., Hosea, M.E.: Analysis and implementation of TR-BDF2. Appl. Numer. Math. 20, 21–37 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Wojtaszezyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge, U.K. (1997)Google Scholar
  11. 11.
    Sannuti, P.: Analysis and synthesis of dynamical systems via block-pulse functions. Proc. IEE 124, 569–571 (1977)Google Scholar
  12. 12.
    Brown, K.M.: Solution of simultaneous nonlinear equations. Commun. ACM 10, 728–729 (1967)CrossRefGoogle Scholar
  13. 13.
    Finlayson, B.A.: Nonlinear Analysis in Chemical Engineering. McGraw Hill, New York (1980)Google Scholar
  14. 14.
    Hindmarsh, A.C., Byrne, G.D.: EPISODE: an effective pakage for the integration of systems of ordinary differential equations. Report UCID-30112, Rev. 1, Lawrence Livermore Laboratory, Livermore, CA (April 1977)Google Scholar
  15. 15.
    Shampine, L.F., Gear, C.W.: A user's view of solving stiff ordinary differential equations. SIAM Rev. 21, 1–17 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Byrne, G.D., Hindmash, A.C.: Numerical Solution of Stiff Ordinary Differential Equations, AIChE Today Series. American Institute of Chemical Engineers, New York (1977)Google Scholar
  17. 17.
    Scraton, R.E.: Further Numerical Methods in Basic. Arnold, London (1987)Google Scholar
  18. 18.
    Neil, C.H.: Existence, uniqueness and behavior of solutions of a singular nonlinear system from fluid dynamics. SIAM J. Appl. Math. 44, 512–523 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Watkins, D.S.: Determining initial values for stiff systems of ordinary differential equations. SIAM J. Numer. Anal. 18(1), 13–20 (1981)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. M. Bujurke
    • 1
  • C. S. Salimath
    • 1
  • S. C. Shiralashetti
    • 2
  1. 1.Department of MathematicsKarnatak UniversityDharwadIndia
  2. 2.S.D.M. College of Engineering & TechnologyDharwadIndia

Personalised recommendations