Nonlinear Dynamics

, Volume 51, Issue 1–2, pp 189–198 | Cite as

Asymptotic approximation of an ionic model for cardiac restitution

Original Paper

Abstract

Cardiac restitution has been described both in terms of ionic models – systems of ODE's – and in terms of mapping models. While the former provide a more fundamental description, the latter are more flexible in trying to fit experimental data. Recently, we proposed a two-dimensional mapping that accurately reproduces restitution behavior of a paced cardiac patch, including rate dependence and accommodation. By contrast, with previous models only a qualitative, not a quantitative, fit had been possible. In this paper, a theoretical foundation for the new mapping is established by deriving it as an asymptotic limit of an idealized ionic model.

Keywords

Cardiac dynamics Ionic model Mapping model Asymptotic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banville, I., Gray, R.A.: Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. J. Cardiovasc. Electrophysiol. 13, 1141–1149 (2002)CrossRefGoogle Scholar
  2. 2.
    Cherry, E.M., Fenton, F.H.: Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects. Am. J. Physiol. 286, H2332–H2341 (2004)Google Scholar
  3. 3.
    Cain, J.W., Schaeffer, D.G.: Two-term asymptotic approximation of a cardiac restitution curve. SIAM Rev. 48, 537–546 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chialvo, D.R., Michaels, D.C., Jalife, J.: Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Circ. Res. 66, 525–545 (1990)Google Scholar
  5. 5.
    di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Bifurcation and Chaos in Piecewise-smooth Dynamical Systems: Theory and Applications. Springer-Verlag, Berlin (in process)Google Scholar
  6. 6.
    Elharrar, V., Surawicz, B.: Cycle length effect on restitution of action potential duration in dog cardiac fibers. Am. J. Physiol. 244, H782–H792 (1983)Google Scholar
  7. 7.
    Foale, S., Bishop, R.: Bifurcations in impacting systems. Nonlinear Dyn. 6, 285–299 (1994)CrossRefGoogle Scholar
  8. 8.
    Fox, J.J., McHarg, J.L., Gilmour, R.F., Jr.: Ionic mechanism of electrical alternans. Am J. Physiol. 282, H516–H530 (2002)Google Scholar
  9. 9.
    Fox, J.J., Bodenschatz, E., Gilmour, R.F., Jr.: Period-doubling instability and memory in cardiac tissue. Phys. Rev. Lett. 89, 138101-1–138101-4 (2002)Google Scholar
  10. 10.
    Hall, G.M., Bahar, S., Gauthier, D.J.: Prevalence of rate-dependent behaviors in cardiac muscle. Phys. Rev. Lett. 82, 2995–2998 (1999)CrossRefGoogle Scholar
  11. 11.
    Kalb, S.S., Dobrovolny, H.M., Tolkacheva, E.G., Idriss, S.F., Krassowska, W., Gauthier, D.J.: The restitution portrait: A new method for investigating rate-dependent restitution. J. Cardiovasc. Electrophysiol. 15, 698–709 (2004)CrossRefGoogle Scholar
  12. 12.
    Karma, A.: Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett. 71, 1103–1107 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Luo, C., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. Circ. Res. 74, 1071–1096 (1994)Google Scholar
  14. 14.
    Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65, 767–793 (2003)CrossRefGoogle Scholar
  15. 15.
    Nolasco, J.B., Dahlen, R.W.: A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25, 191–196 (1968)Google Scholar
  16. 16.
    Nusse, H.E., Yorke, J.A.: Border-collision bifurcations including period two to period three for piecewise smooth systems. Physica D 57, 39–57 (1992)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Schaeffer, D.G., Cain, J.W., Gauthier, D.J., Kalb, S.S., Oliver, R.A., Tolkacheva, E.G., Ying, W., Krassowska, W.: An ionically based mapping model with memory for cardiac restitution. Bull. Math. Biol. (to appear)Google Scholar
  18. 18.
    Shiferaw, Y., Watanabe, M.A., Garfinkel, A., Weiss, J.N., Karma, A.: Model of intracellular calcium cycling in ventricular myocytes. Biophys. J. 85, 3666–3686 (2003)CrossRefGoogle Scholar
  19. 19.
    Zhao, X., Dankowicz, H., Reddy, C.K., Nayfeh, A.H.: Modeling and simulation methodology for impact microactuators. J. Micromech. Microeng. 14, 775–784 (2004)CrossRefGoogle Scholar
  20. 20.
    Zhao, X., Reddy, C.K., Nayfeh, A.H.: Nonlinear dynamics of an electrically driven impact microactuator. Nonlinear Dyn. 40, 227–239 (2005)MATHCrossRefGoogle Scholar
  21. 21.
    Zhusubaliyev, Z.T., Mosekilde, E.: Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, Singapore (2003)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • David G. Schaeffer
    • 1
    • 2
  • Wenjun Ying
    • 3
  • Xiaopeng Zhao
    • 2
    • 3
  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.Center for Nonlinear and Complex SystemsDuke UniversityDurhamUSA
  3. 3.Department of Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations