Nonlinear Dynamics

, Volume 50, Issue 3, pp 587–596 | Cite as

Experimental study of an impact oscillator with viscoelastic and Hertzian contact

Original Paper

Abstract

Modeling an impact event is often related to the desired outcome of an impact oscillator study. If the only intent is to study the dynamic behavior of the system, numerous researchers have shown that simpler impact models will often suffice. However, when the geometric contours and material properties of the two colliding surfaces are known, it is often of interest to model the contact event at a greater level of complexity. This paper investigates the application of a finite time impact model to the study of a parametrically excited planar pendulum subjected to a motion-dependent discontinuity. Experimental and numerical studies demonstrate the presence of multiple periodic attractors, subharmonics, quasi-periodic motions, and chaotic oscillations.

Keywords

Impact oscillator Hertzian contact Viscoelastic impact Chaotic oscillations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wiercigroch, M., Kraker, B.: Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities. Cambridge University Press, Cambridge, UK (2000)MATHGoogle Scholar
  2. 2.
    Mann, B.P., Garg, N.K., Young, K.A., Helvey, A.M.: Milling bifurcations from structural asymmetry and nonlinear regeneration. Nonlinear Dyn. 42, 319–337 (2005)MATHCrossRefGoogle Scholar
  3. 3.
    Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145(2), 279–287 (1991)CrossRefGoogle Scholar
  4. 4.
    Moore, D.B., Shaw, S.W.: The experimental response of an impacting pendulum system. Int. J. Non-Linear Mech. 25, 1–16 (1990)CrossRefGoogle Scholar
  5. 5.
    Quinn, D.D.: Finite duration impacts with external forces. J. Appl. Mech. 72, 778–784 (2005)MATHCrossRefGoogle Scholar
  6. 6.
    Bayly, P.V., Virgin, L.N.: An experimental study of an impacting pendulum. J. Sound Vib. 164(2), 363–374 (1993)CrossRefGoogle Scholar
  7. 7.
    Bayly, P.V.: On the spectral signature of weakly bilinear oscillators. J. Vib. Acoust. 118, 353–361 (1996)Google Scholar
  8. 8.
    Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–155 (1983)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Zeebroeck, M.V., Tijskens, E., Liedekerke, P.V., Deli, V., Baerdemaeker, J.D., Ramon, H.: Determination of the dynamical behavior of biological materials during impact using a pendulum device. J. Sound Vib. 266, 465–480 (2003)CrossRefGoogle Scholar
  10. 10.
    Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 97, 440–445 (1975)Google Scholar
  11. 11.
    Ladislav, P., Paterka, F.: Impact oscillator with Hertz’s model of contact. Meccanica 38, 99–114 (2003)MATHCrossRefGoogle Scholar
  12. 12.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985)MATHGoogle Scholar
  13. 13.
    Hertz, H.: On the elastic contact of solids. J. für die reine und Angewandte Mathematik 92, 156–171 (1881)Google Scholar
  14. 14.
    Slade, K.N., Virgin, L.N., Bayly, P.V.: Extracting information from interimpact intervals in a mechanical oscillator. Phys. Rev. E 56(3), 3705–3708 (1997)CrossRefGoogle Scholar
  15. 15.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)MATHGoogle Scholar
  16. 16.
    Mann, B.P., Koplow, M.A.: Symmetry breaking bifur-cations in a parametrically excited pendulum. Nonlinear Dyn. 46(4), 427–437Google Scholar
  17. 17.
    Coleman, T., Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optimization 6, 418–445 (1996)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Henon, M.: On the numerical computation of Poincaré maps. Phys. D 5, 412–414 (1982)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, UK (2003)Google Scholar
  20. 20.
    Virgin, L.N.: Introduction to Experimental Nonlinear Dynamics, 2nd edn. Cambridge University Press, Cambridge, UK (2000)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Dynamical Systems Laboratory, Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA
  2. 2.Engineer, USAFEglin AFBUSA

Personalised recommendations