Nonlinear Dynamics

, Volume 50, Issue 3, pp 733–742 | Cite as

Alternate pacing of border-collision period-doubling bifurcations

  • Xiaopeng ZhaoEmail author
  • David G. Schaeffer
Original Paper


Unlike classical bifurcations, border-collision bifurcations occur when, for example, a fixed point of a continuous, piecewise C 1 map crosses a boundary in state space. Although classical bifurcations have been much studied, border-collision bifurcations are not well understood. This paper considers a particular class of border-collision bifurcations, i.e., border-collision period-doubling bifurcations. We apply a subharmonic perturbation to the bifurcation parameter, which is also known as alternate pacing, and we investigate the response under such pacing near the original bifurcation point. The resulting behavior is characterized quantitatively by a gain, which is the ratio of the response amplitude to the applied perturbation amplitude. The gain in a border-collision period-doubling bifurcation has a qualitatively different dependence on parameters from that of a classical period-doubling bifurcation. Perhaps surprisingly, the differences are more readily apparent if the gain is plotted versus the perturbation amplitude (with the bifurcation parameter fixed) than if plotted versus the bifurcation parameter (with the perturbation amplitude fixed). When this observation is exploited, the gain under alternate pacing provides a useful experimental tool to identify a border-collision period-doubling bifurcation.


Bifurcation identification Border-collision bifurcations Alternate pacing Prebifurcation amplification Cardiac dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banerjee, S., Grebogi, C.: Border collision bifurcations in two-dimensional piecewise smooth maps. Phys. Rev. E 59, 4052 (1999)CrossRefGoogle Scholar
  2. 2.
    Berger, C.M., Zhao, X., Schaeffer, D.G., Dobrovolny, H., Krassowska,W., Gauthier, D.J.: Smooth and border-collision characteristics of the bifurcation to alternans in paced cardiac tissue, submittedGoogle Scholar
  3. 3.
    di Bernardo, M., Feigin, M.I., Hogan, S.J., Homer, M.E.: Local analysis of C-bifurcation in n-dimensional piecewise-smooth dynamical systems. Chaos Solitons Fractals 10, 1881–1908 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Bifurcation and Chaos in Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer-Verlag, New York, in process.Google Scholar
  5. 5.
    Feigin, M.I.: Doubling of the oscillation period with C-bifurcations in piecewise continuous systems. Prikl. Mat. Mekh. 34, 861–869 (1970) in RussianMathSciNetGoogle Scholar
  6. 6.
    Feigin, M.I.: On the generation of sets of subharmonic modes in a piecewise continuous system. Prikl. Mat. Mekh. 38, 810–818 (1974) in RussianGoogle Scholar
  7. 7.
    Feigin, M.I.: On the structure of C-bifurcation boundaries of piecewise continuous systems. Prikl. Mat. Mekh. 42, 820–829 (1978) in RussianMathSciNetGoogle Scholar
  8. 8.
    Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory: Vol. I, Applied Mathematical Sciences 51, Springer-Verlag, New York (1985)Google Scholar
  9. 9.
    Hassouneh, M.A.: Feedback control of border collision bifurcations in piecewise smooth systems. Ph.D. Dissertation, University of Maryland, College Park, MD (2003)Google Scholar
  10. 10.
    Hassouneh, M.A., Abed, E.H., Nusse, H.E.: Robust dangerous border-collision bifurcations in piecewise smooth systems. Phys. Rev. Lett. 92, 070201 (2004)CrossRefGoogle Scholar
  11. 11.
    Hassouneh, M.A., Abed, E.H.: Border collision bifurcation control of cardiac alternans. Int. J. Bif. Chaos 14, 3303–3315 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Karma, A., Shiferaw, Y.: New Pacing Protocol for the Induction of T-Wave Alternans at Slower Heart Rate and Improving the Prediction of Sudden Cardiac Death. IN: NASPE Heart Rhythm Society, San Francisco, CA, May 19–22 (2004)Google Scholar
  13. 13.
    Nusse, H.E., Yorke, J.A.: Border-collision bifurcations including period two to period three for piecewise smooth systems. Physica D 57, 39–57 (1992)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nusse, H.E., Ott, E., Yorke, J.A.: Border-collision bifurcations: An explanation for observed bifurcation phenomena. Phys. Rev. E 49, 1073–1076 (1994)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Sun, J., Amellal, F., Glass, L., Billette, J.: Alternans and period-doubling bifurcations in atrioventricular nodal conduction. J. Theor. Biol. 173, 79–91 (1995)CrossRefGoogle Scholar
  16. 16.
    Surovyatkina, E.: Prebifurcation noise amplification and noise-dependent hysteresis as indicators of bifurcations in nonlinear geophysical systems. Nonlinear Process. Geophys. 12, 25–29 (2005)Google Scholar
  17. 17.
    Vohra, S.T., Wiesenfeld, K.: Experimental test of the normal form for period doubling bifurcations. Physica D 86, 27–33 (1995)zbMATHCrossRefGoogle Scholar
  18. 18.
    Wiesenfeld, K., McNamara, B.: Small-signal amplification in bifurcating dynamical systems. Phys. Rev. A 33, 629 (1986); erratum: Phys. Rev. A 33, 3578 (1986)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Zhao, X., Schaeffer, D.G., Berger, C.M., Gauthier, D.J.: Small-signal amplification of period-doubling bifurcations in smooth iterated maps. Nonlinear Dyn., to appearGoogle Scholar
  20. 20.
    Zhusubaliyev, Z.T., Mosekilde, E.: Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, Singapore (2003)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Mathematics and Center for Nonlinear and Complex SystemsDuke UniversityDurhamUSA

Personalised recommendations