Nonlinear Dynamics

, Volume 48, Issue 4, pp 417–422 | Cite as

Linearization criteria for a system of second-order quadratically semi-linear ordinary differential equations

Original Article


Conditions are derived for the linearizability via invertible maps of a system of n second-order quadratically semi-linear differential equations that have no lower degree lower order terms in them, i.e., for the symmetry Lie algebra of the system to be sl(n + 2, ℝ). These conditions are stated in terms of the coefficients of the equations and hence provide simple invariant criteria for such systems to admit the maximal symmetry algebra. We provide the explicit procedure for the construction of the linearizing transformation. In the simplest case of a system of two second-order quadratically semi-linear equations without the linear terms in the derivatives, we also provide the construction of the linearizing point transformation using complex variables. Examples are given to illustrate our approach for two- and three-dimensional systems.


Lie symmetry algebra Linearization System of second-order ordinary differential equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aminova, A.V., Aminov, N.A.-M.: Projective geometry of systems of differential equations: general conceptions. Tensor N. S. 62, 65–86 (2000)MathSciNetGoogle Scholar
  2. 2.
    Cartan, E.: Sur les varites a connexion projective. Bull. Soc. Math. France 52, 205–241 (1924)MathSciNetGoogle Scholar
  3. 3.
    Chern, S.: Sur la géometrie d'une équation differentialle du 3e ordre. C. R. Acad. Sci. Paris, p. 1227 (1937)Google Scholar
  4. 4.
    Feroze, T., Mahomed, F.M., Qadir, A.: The connection between isometries and symmetries of geodesic equations of the underlying spaces. Nonlinear Dyn. 45, 65–74 (2006)Google Scholar
  5. 5.
    Ibragimov, N.H., Mahomed, F.M.: ordinary differential equations. In: CRC Handbook of Lie Group Analysis of Differential Equations, Ibragimov, N.H. (ed.), vol. 3. CRC Press, Boca Raton, FL (1996)Google Scholar
  6. 6.
    Ibragimov, N.H., Meleshko, S.V.: Linearization of third-order ordinary differential equations by point transformations. J. Math. Anal. Appl. 308(1), 266–289 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lie, S.: Klassification und Integration von gewöhnlichen Differentialgleichungen Zwischen x, y, die einie Gruppe von Transformationen gestatten, III. Arch. for Math. VIII(4), 371–358 (1883)Google Scholar
  8. 8.
    Mahomed, F.M., Leach, P.G.L.: Symmetry lie algebras of nth order ordinary differential equations. J. Math. Anal. Appl. 151, 80–107 (1990)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fredericks, E., Mahomed, F.M., Momoniat, E., Qadir, A.: Constructing a space from the system of gedesic equations. Submitted (2007)Google Scholar
  10. 10.
    Sarlet, W.: Complete decoupling of systems of ordinary second-order differential equations. In: Differential equations and chaos: lectures on selected topics, Ibragimov, N.H., Mahomed, F.M., Mason, D.P., Sherwell, D. (eds.), pp. 237–264. New Age Publication, New Delhi, India (1994)Google Scholar
  11. 11.
    Tresse, A.R.: Sur les Invariants Différentiels des Groupes Continus de Transformations. Acta Math. 18, 1–88 (1894)CrossRefGoogle Scholar
  12. 12.
    Wafo Soh, C., Mahomed, F.M.: Linearization criteria for a system of second-order ordinary differential equations. Int. J. Non-Linear Mech. 36, 671–677 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied MathematicsUniversity of the WitwatersrandJohannesbergSouth Africa
  2. 2.Centre for Advanced Mathematics and PhysicsNational University of Sciences and TechnologyRawalpindiPakistan
  3. 3.Department of Mathematical SciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations