Nonlinear Dynamics

, Volume 47, Issue 1–3, pp 115–128 | Cite as

Non smooth dynamics of mechanical systems with history term

Original Article

Abstract

Models involving maximal monotone term and history (delay) term are considered in a mathematical and numerical point of view.

Keywords

Differential inclusions Delay Convolution Maximal monotone multivalued operator Numerical analysis Euler implicit numerical scheme History term 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastien, J., Schatzman, M.: Schéma numérique pour des inclusions différentielles avec terme maximal monotone. C. R. Acad. Sci. Paris Sér. I Math. 3307, 611–615 2000MathSciNetGoogle Scholar
  2. 2.
    Bastien, J., Schatzman, M.: Numerical precision for differential inclusions with uniqueness. M2AN Math. Model Numer. Anal. 363, 427–460 2002CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bastien, J., Lamarque, C.-H.: Some models with friction term and history term. In: Enoc 2005, Fifth EUROMECH Nonlinear Dynamics Conference, Eindhoven, The Netherlands. Department of Mechanical Engineering, University of Technology, 7–12 August 2005Google Scholar
  4. 4.
    Brezis, H.: Perturbations non linéaires dʼnopérateurs maximaux monotones. C. R. Acad. Sci. Paris Sér. A–B 269, A566–A569 1969MathSciNetGoogle Scholar
  5. 5.
    Bre72 Brezis, H.: Problémes unilatéraux. J. Math. Pures Appl. 51, 1–168 1972MathSciNetGoogle Scholar
  6. 6.
    Bre73 Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, North-Holland Mathematics Studies, No. 5. Notas de Matemática, 501973MATHGoogle Scholar
  7. 7.
    Lamarque, C.-H., Bastien, J., Holland, M.: Study of a maximal monotone model with a delay term. SIAM J. Numer. Anal. 414, 1286–1300 2003CrossRefMathSciNetGoogle Scholar
  8. 8.
    Lamarque, C.-H., Bastien, J., Holland, M.: Maximal monotone model with delay term of convolution. Math. Problems Eng. 4, 437–453 2005CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lenci, S., Rega, G.: Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation. Chaos Solitons Fractals 1115, 2453–2472 2000CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lenci, S., Rega, G.: Controlling nonlinear dynamics in a two-well impact system. I. Attractors and bifurcation scenario under symmetric excitations. Internat. J. Bif. Chaos Appl. Sci. Eng. 812, 2387–2407 1998CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lenci, S., Rega, G.: Controlling nonlinear dynamics in a two-well impact system. II. Attractors and bifurcation scenario under unsymmetric optimal excitation. Internat. J. Bif. Chaos Appl. Sci. Eng. 812, 2409–2424 1998CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lenci, S., Rega, G.: Regular nonlinear dynamics and bifurcations of an impacting system under general periodic excitation. Nonl. Dyn. 343–4, 249–268 2004, 2003MathSciNetGoogle Scholar
  13. 13.
    Lenci, S., Rega, G.: Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks. Internat. J. Bif. Chaos Appl. Sci. Eng. 156, 1901–1918 2005CrossRefMathSciNetGoogle Scholar
  14. 14.
    Lippold, G.: Error estimates for the implicit Euler approximation of an evolution inequality. Nonl. Anal. 1511, 1077–1089 1990CrossRefMathSciNetGoogle Scholar
  15. 15.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B. Springer-Verlag, New York, Nonlinear monotone operators, Translated from german by the author and Leo F. Boron, 1990MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Laboratoire Mécatronique 3M équipe D’accueil A 3318Université de Technologie de Belfort-MontbéliardBelfort cedexFrance
  2. 2.URA 1652 CNRS, Département Génie Civil et BâtimentLaboratoire Géomatériaux, école Nationale des Travaux Publics de l’EtatVaulx-en-Velin CedexFrance

Personalised recommendations