Nonlinear Dynamics

, Volume 43, Issue 1–2, pp 73–96 | Cite as

Modelling, Dynamics and Control of Tethered Satellite Systems

  • M. Krupa
  • W. Poth
  • M. Schagerl
  • A. Steindl
  • W. Steiner
  • H. Troger
  • G. Wiedermann


Tethered satellite systems (TSS) pose quite challenging problems concerning their modelling, derivation of the equations of motion, numerical simulation of their dynamics, deciding on stability of relative equilibria provided the system moves on a circular orbit around the Earth and the occurrence of chaotic dynamics. Moreover, for the processes of deployment or retrieval of one satellite from or to another satellite certain control strategies, for example time or energy optimal control, are necessary. All these problems are considered in this paper.

Key Words

chaotic dynamics Hamilton's principle optimal control reduced energy momentum method relative equilibrium stiff differential equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. Bainum, I. Bekey, L. Guerriero, P. A. Penzo (eds.), Handbook: Tethers in Space, Advances in the Astronautical Sciences, 62, American Astronautical Society, 1986.Google Scholar
  2. 2.
    Handbook: Space Tethers for Science in the Space Station Era, Societa Italiana di Fisica, Conference Proceedings, 14, Bologna, 1988.Google Scholar
  3. 3.
    Beletskii, V. V. and Levin, E. M., ‘Dynamics of space tether systems’, Advances of the Astronautical Sciences 83, 1993, 267–322.ADSGoogle Scholar
  4. 4.
    Proceedings of the Fourth International Conference on Tethers in Space, Smithsonian Institution, Washington, D.C., 10–14 April 1995, Science and Technology Corporation, Hampton, VA, 1995.Google Scholar
  5. 5.
    Simo, J. C. and Lewis, D., ‘Energy methods in the stability analysis of relative equilibria of Hamiltonian systems’, in Proceedings of the Sixth Symposium on Continuum Models and Discrete Systems, Dijon, June 1989, G. A. Maugin (ed.), Longman, 1989, pp. 162–183.Google Scholar
  6. 6.
    Marsden, J. E. and Ratiu, T. S., An Introduction to Mechanics and Symmetry, A Basic Exposition of Classical Mechanical Systems, Springer-Verlag, New York, 1994.Google Scholar
  7. 7.
    Simo, J. C., Lewis, D., and Marsden, J. E., ‘Stability of relative equilibria. Part I: The reduced energy-momentum method’, Archive for Rational Mechanics and Analysis 115, 1991, 15–59.MathSciNetGoogle Scholar
  8. 8.
    Simo, J. C., Posbergh, T. A., and Marsden, J. E., ‘Stability of relative equilibria. Part II: Application to nonlinear elasticity’, Archive for Rational Mechanics and Analysis 115, 1991, 61–100.MathSciNetGoogle Scholar
  9. 9.
    Bainum, P. and Kumar, V. K., ‘Optimal control of the shuttle-tethered-subsatellite system’, Acta Astronautica 7, 1980, 1333–1348.CrossRefGoogle Scholar
  10. 10.
    Misra, A. K. and Modi, V. J., ‘Deployment and retrival of shuttle supported tethered satellites’, Journal of Guidance and Control 5(3), 1982, 278–285.Google Scholar
  11. 11.
    Kohler, P., Maag, W., Wehrli, R., Weber, R., and Brauchli, H., Dynamics of a System of two Satellites Connected by a Deployable and Extensible Tether of Finite Mass, ESTEC Contract No. 2992/76/NL/AK(SC), 1978.Google Scholar
  12. 12.
    Steiner, W., Steindl, A., and Troger, H., ‘Dynamics of a space tethered satellite system with two rigid endbodies’, in Proceedings of the Fourth International Conference on Tethers in Space, Science and Technology Corporation, Hampton, VA, 1995, pp. 1367–1379.Google Scholar
  13. 13.
    Wiedermann, G., Schagerl, M., Steindl, A., and Troger, H., ‘Computation of force controlled deployment and retrieval of a tethered satellite system by the finite element method’, in Proceedings of ECCM’99, W. Wunderlich (ed.), 1999, pp. 410–429.Google Scholar
  14. 14.
    Schagerl, M., Troger, H., and Wiedermann, G., ‘Boundary conditions for the cable dynamics of tethered satellite systems’, in Proceedings of the Third International Symposium on Cable Dynamics, Trondheim, 1999.Google Scholar
  15. 15.
    Krupa, M., Kuhn, A., Poth, W., Schagerl, M., Steindl, A., Steiner, W., Troger, H., and Wiedermann, G., ‘Tethered satellite systems: A new concept of space flight’, European Journal of Mechanics A Solids 19(special issue), 2000, S145–S164.Google Scholar
  16. 16.
    Arnold, V. I., Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978.Google Scholar
  17. 17.
    Schagerl, M., Steindl, A., and Troger, H., ‘Dynamical analysis of the deployment process of tethered satellite systems’, in Proceedings of the IUTAM/IASS Symposium on Deployable Structures: Theory and Application, S. Pellegrino, S. D. Guest (eds.), Solid Mechanics and its Applications, 80, Kluwer Academic Publishers, Dordrecht, 2000, pp. 345–354.Google Scholar
  18. 18.
    Crellin, E. B., Janssens, F., Poelaert, D., Steiner, W., and Troger, H., ‘On balance and variational formulations of the equations of motion of a body deploying along a cable’, Journal of Applied Mechanics 64, 1997, 369–374.Google Scholar
  19. 19.
    Lur'e, L., Méchanique Analytique, Vol. I & II, Masson & Cie, Paris, 1968.Google Scholar
  20. 20.
    Sommerfeld, A., Vorlesungen über Theoretische Physik, Vol. 1, Mechanik, Akademische Verlagsgesellschaft Leipzig, 1943, p. 249.Google Scholar
  21. 21.
    Hairer, E. and Wanner, G., Solving Ordinary Differential Equations, II. Stiff and Differential-Algebraic Problems, Springer Verlag, Berlin, 1991.Google Scholar
  22. 22.
    Poth, W., Matzl, P. W., Auzinger, M., Steindl, A., and Troger, H., ‘Comparison of displacement versus natural variables for the numerical simulation of a string pendulum, nonlinear dynamics, chaos, control and their applications to engineering sciences’, in Vol. 5: Chaos, Control and Time Series, J. M. Balthazar, P. B. Goncalves, R. F. Brasil, I. L. Caldas, and F. B. Rizatto (eds.), 2002, pp. 127–136 (ISBN 85-900351-5-8).Google Scholar
  23. 23.
    Kuhn, A., ‘Numerische Behandlung von “Tethered Satellite Systems” unter besonderer Berücksichtigung längssteifer Verbindungsseile’, Dissertation TU-Wien, 1995.Google Scholar
  24. 24.
    Vu-Quoc, L. and Simo, J. C., ‘Dynamics of Earth-orbiting flexible satellites with multibody components’, Journal of Guidance, Control and Dynamics 10, 1987, 549–558.Google Scholar
  25. 25.
    Simo, J. C. and Vu-Quoc, L., ‘On the dynamics in space of rods undergoing large motions – A geometrically exact approach’, Computer Methods in Applied Mechanics and Engineering 66, 1986, 125–161.MathSciNetGoogle Scholar
  26. 26.
    Kane, C., Repetto, E. A., Ortiz, M., and Marsden, J., ‘Finite element analysis of nonsmooth contact’, Computer Methods in Applied Mechanics and Engineering 180, 1999, 1–26.CrossRefMathSciNetGoogle Scholar
  27. 27.
    Kane, C., Marsden, J. E., and Ortiz, M., ‘Symplectic energy momentum integrators’, Journal of Mathematical Physics 40, 1999, 3353–3371.CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Poth, W., Schagerl, M., Steindl, A., Steiner, W., and Troger, H., ‘Numerically efficient formulation of the equations of motion of tethered satellite systems’, in Proceedings of IUTAM Symposium on Discretization Methods, Vienna, 1997.Google Scholar
  29. 29.
    Brenan, K. E., Cambell, S. L., and Petzold, L. R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North Holland, New York, 1989.Google Scholar
  30. 30.
    Barkow, B., Steindl, A., Troger, H., and Wiedermann, G., ‘Various methods of controlling the deployment of a tethered satellite’, Journal of Vibration and Control 9, 2003, 187–208.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Steindl, A. and Troger, H., ‘Optimal control of deployment of a tethered subsatellite’, Nonlinear Dynamics 31, 2003, 257–274.CrossRefMathSciNetGoogle Scholar
  32. 32.
    Krupa, M., Schagerl, M., Steindl, A., Szmolyan, P., and Troger, H., ‘Relative equilibria of tethered satellite systems and their stability for very stiff tethers’, Dynamical Systems 16, 2001, 253–287.MathSciNetGoogle Scholar
  33. 33.
    Steiner, W., ‘Transient chaotic oscillations of a tethered satellite system’, Acta Mechanica 127, 1998, 155–163.CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Beardsley, T., ‘The way to go in space’, Scientific American, February, 1999.Google Scholar
  35. 35.
    Hoyt, R. P., Forward, R. L., Nordley, G. D., and Uphoff, C. W., ‘Rapid interplanetary tether transport systems, IAF-99-A.5.10’, in Proceedings of the 50th IAF Congress, Amsterdam, 1999, 31 pp.Google Scholar
  36. 36.
    Marsden, J. E., Lectures on Mechanics, London Mathematical Society, Lecture Note Series 174, Cambridge University Press, Cambridge, 1992.Google Scholar
  37. 37.
    Zimmermann, F., Schoettle, U. M., and Messerschmid, E., ‘Optimal Deployment and return trajectories for a tether-assisted re-entry mission’, in Proceedings of the AIAA 99-4168, AIAA Atmospheric Flight Mechanics Conference, Portland, OR, August 9–11, 1999.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • M. Krupa
    • 1
  • W. Poth
    • 1
  • M. Schagerl
    • 1
  • A. Steindl
    • 1
  • W. Steiner
    • 1
  • H. Troger
    • 1
  • G. Wiedermann
    • 1
  1. 1.Institute for MechanicsVienna University of TechnologyAustria

Personalised recommendations