Nonlinear Dynamics

, Volume 42, Issue 4, pp 395–405 | Cite as

Homotopy Solutions for a Generalized Second-Grade Fluid Past a Porous Plate

Article

Abstract

The flow of a second-grade fluid past a porous plate subject to either suction or blowing at the plate has been studied. A modified model of second-grade fluid that has shear-dependent viscosity and can predict the normal stress difference is used. The differential equations governing the flow are solved using homotopy analysis method (HAM). Expressions for the velocity have been constructed and discussed with the help of graphs. Analysis of the obtained results showed that the flow is appreciably influenced by the material and normal stress coefficient. Several results of interest are deduced as the particular cases of the presented analysis.

Key words

generalized second-grade fluid HAM solutions hydrodynamic fluid porous plate shear-dependent viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bird, R. B., Armstrong, R. C., and Hassager, J., Dynamics of Polymeric Liquids., Vol. 1, Wiley, New York, 1977.Google Scholar
  2. 2.
    Slattery, J. C., Advanced Transport Phenomena., Cambridge University Press, New York, 1999.Google Scholar
  3. 3.
    Dunn, J. E. and Fosdick, R. L., ‘Thermodynamics stability, and boundedness of fluids of complexity 2 and fluids of second grade,’ Arch. Rat. Mech. Anal.. 56., 1974, 191–252.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dunn, J. E. and Rajagopal, K. R., ‘Fluids of differential type: Critical review and thermodynamic analysis,’ Int. J. Eng. Sci.. 33., 1995, 689–729.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fosdick, R. L. and Rajagopal, K. R., ‘Anomalous features in the model of second order fluids,’ Arch. Rat. Mech. Anal.. 70., 1979, 145–152.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Rajagopal, K. R., ‘A note on unsteady unidirectional flows of a non-Newtonian fluid,’ Int. J. Non-Linear Mech.. 17., 1982, 369–373.MATHMathSciNetGoogle Scholar
  7. 7.
    Rajagopal, K. R., ‘On the creeping flow of the second grade fluid,’ J. Non-Newtonian Fluid Mech.. 15., 1984, 239–246.MATHGoogle Scholar
  8. 8.
    Rajagopal, K. R., ‘Longitudinal and torsional oscillations of a rod in a non-Newtonian fluid,’ Acta Mech.. 49., 1983, 282–285.CrossRefGoogle Scholar
  9. 9.
    Hayat, T., Asghar, S., and Siddiqui, A. M., ‘On the moment of a plane disk in a non-Newtonian fluid,’ Acta Mech.. 136., 1999, 125–131.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hayat, T., Asghar, S., and Siddiqui, A. M., ‘Periodic unsteady flows of a non-Newtonian fluid,’ Acta Mech.. 131., 1998, 169–175.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hayat, T., Asghar, S., and Siddiqui, A. M., ‘Some unsteady unidirectional flows of a non-Newtonian fluid,’ Int. J. Eng. Sci.. 38., 2000, 337–346.CrossRefGoogle Scholar
  12. 12.
    Hayat, T., Khan, M., Siddiqui, A. M., and Asghar, S., ‘Transient flows of a second grade fluid,’ Int. J. Non-Linear Mech.. 39., 2004, 1621–1633.MathSciNetGoogle Scholar
  13. 13.
    Benharbit, A. M. and Siddiqui, A. M., ‘Certain solutions of the equations of the planar motion of a second grade fluid for steady and unsteady cases,’ Acta Mech.. 94., 1992, 85–96.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Rajagopal, K. R. and Gupta, A. S., ‘An exact solution for the flow of a non-Newtonian fluid past an infinite plate,’ Meccanica. 19., 1984, 158–160.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Bandelli, R. and Rajagopal, K. R., ‘On the falling of objects in non-Newtonian fluids,’ Ann. Ferrara. 39., 1996, 1–18.Google Scholar
  16. 16.
    Bandelli, R., ‘Unsteady unidirectional flows of second grade fluids in domains with heated boundaries,’ Int. J. Non-Linear Mech.. 30., 1995, 263–269.MATHMathSciNetGoogle Scholar
  17. 17.
    Fetecau, C. and Zierep, J., ‘On a class of exact solutions of the equations of motion of a second grade fluid,’ Acta Mech.. 150., 2001, 135–138.Google Scholar
  18. 18.
    Fetecau, C., Fetecau, C., and Zierep, J., ‘Decay of a potential vortex and propagation of a heat wave in second grade fluid,’ Int. J. Non-Linear Mech.. 37., 2002, 1051–1056.Google Scholar
  19. 19.
    Man, C. S., ‘Nonsteady channel flow of ice as a modified second grade fluid with power law viscosity,’ Arch. Rat. Mech. Anal.. 119., 1992, 35–57.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Massoudi, M. and Phuoc, T. X., ‘Fully developed flow of a modified second grade fluid with temperature dependent viscosity,’ Acta Mech.. 150., 2001, 23–37.CrossRefGoogle Scholar
  21. 21.
    Straughan, B., ‘Energy stability in the Benard problem for a fluid of second grade,’ J. Appl. Math. Phys. (ZAMP). 34., 1983, 502–508.MATHMathSciNetGoogle Scholar
  22. 22.
    Straughan, B., The Energy Method, Stability and Nonlinear Convection., Springer, New York, 1992.Google Scholar
  23. 23.
    Gupta, G. and Massoudi, M., ‘Flow of a generalized second grade fluid between heated plates,’ Acta Mech.. 99., 1993, 21–33.CrossRefGoogle Scholar
  24. 24.
    Franchi, H. and Straughan, B., ‘Stability and nonexistence results in the generalized theory of a fluid of second grade,’ J. Math. Anal. Appl.. 180., 1993, 122–137.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Liao, S. J., ‘The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems,’ Ph.D. Thesis, Shanghai Jiao Tong University, 1992.Google Scholar
  26. 26.
    Liao, S. J. and Campo, A., ‘Analytic solutions of the temperature distribution in Blasius viscous flow problems,’ J. Fluid Mech.. 453., 2002, 411–425.CrossRefMathSciNetGoogle Scholar
  27. 27.
    Liao, S. J., ‘On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet,’ J. Fluid Mech.. 488., 2003, 189–212.CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Liao, S. J., ‘An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude,’ Int. J. Non-Linear Mech.. 38., 2003, 1173–1183.Google Scholar
  29. 29.
    Liao, S. J. and Pop, I., ‘Explicit analytic solution for similarity boundary layer equations,’ Int. J. Heat Mass Trans.. 47., 2004, 75–85.CrossRefGoogle Scholar
  30. 30.
    Ayub, M., Rasheed, A., and Hayat, T., ‘Exact flow of a third grade fluid past a porous plate using homotopy analysis method,’ Int. J. Eng. Sci.. 41., 2003, 2091–2103.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Hayat, T., Khan, M., and Ayub, M., ‘On the explicit analytic solutions of an Oldroyd 6-constant fluid,’ Int. J. Eng. Sci.. 42., 2004, 123–135.MathSciNetGoogle Scholar
  32. 32.
    Liao, S. J., Beyond Perturbation: Introduction to Homotopy Analysis Method., Chapman & Hall/CRC Press, Boca Raton, FL, 2003.Google Scholar
  33. 33.
    Liao, S. J., ‘On the homotopy analysis method for nonlinear problems,’ Appl. Math. Comput.. 147., 2004, 499–513.CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Liao, S. J. and Cheung, K. F., ‘Homotopy analysis of nonlinear progressive waves in deep water,’ J. Eng. Math.. 45., 2003, 105–116.CrossRefMathSciNetGoogle Scholar
  35. 35.
    Hayat, T., Khan, M., and Asghar, S., ‘Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid,’ Acta Mech.. 168., 2004, 213–232.CrossRefGoogle Scholar
  36. 36.
    Rivilin, R. S. and Ericksen, J. L., ‘Stress deformation relations for isotropic materials,’ J. Rat. Mech. Anal.. 4., 1955, 323–425.Google Scholar
  37. 37.
    Man, C. S., Shields, D. H., Kjartanson, B., and Sun, Q., ‘Creeping of ice as a fluid of complexity 2: The pressuremeter problem,’ in Proceedings 10th Canadian Congress on Applied Mechanics., Vol. 1, H. Rasmussen (ed.), Univ. W. Ontario, London, Ontario, 1985.Google Scholar
  38. 38.
    Siddiqui, A. M., Hayat, T., and Asghar, S., ‘Periodic flows of a non-Newtonian fluid between two parallel plates,’ Int. J. Non-Linear Mech.. 34., 1999, 895–899.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations