Nonlinear Dynamics

, Volume 41, Issue 1–3, pp 147–169 | Cite as

The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview

  • Gaetan KerschenEmail author
  • Jean-claude Golinval


Modal analysis is used extensively for understanding the dynamic behavior of structures. However, a major concern for structural dynamicists is that its validity is limited to linear structures. New developments have been proposed in order to examine nonlinear systems, among which the theory based on nonlinear normal modes is indubitably the most appealing. In this paper, a different approach is adopted, and proper orthogonal decomposition is considered. The modes extracted from the decomposition may serve two purposes, namely order reduction by projecting high-dimensional data into a lower-dimensional space and feature extraction by revealing relevant but unexpected structure hidden in the data. The utility of the method for dynamic characterization and order reduction of linear and nonlinear mechanical systems is demonstrated in this study.

Key Words

dynamic characterization order reduction proper orthogonal decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berkooz, G., Holmes, P., and Lumley, J. L., ‘The proper orthogonal decomposition in the analysis of turbulent flows’, Annual Review of Fluid Mechanics 25, 1993, 539–575.CrossRefGoogle Scholar
  2. 2.
    Karhunen, K., ‘Uber Lineare Methoden in der Wahrscheinlichkeitsrechnung’, Annals of Academic Science Fennicae, Series A1 Mathematics and Physics 37, 1946, 3–79.Google Scholar
  3. 3.
    Kosambi, D., ‘Statistics in function space’, Journal of Indian Mathematical Society 7, 1943, 76–88.Google Scholar
  4. 4.
    Loeve, M., ‘Fonctions Aléatoires du Second Ordre’, in Processus stochastiques et mouvement Brownien, P. Levy (ed.), Gauthier-Villars, Paris, 1948.Google Scholar
  5. 5.
    Obukhov, M. A., ‘Statistical description of continuous fields’, Transactions of the Geophysical International Academy Nauk USSR 24, 1954, 3–42.Google Scholar
  6. 6.
    Pougachev, V. S., ‘General theory of the correlations of random functions’, Izvestiya Akademii Nauk USSR 17, 1953, 1401–1402.Google Scholar
  7. 7.
    Berkooz, G., ‘Observations on the proper orthogonal decomposition’, in Studies in Turbulence, Springer, New York, 1992, pp. 229–247.Google Scholar
  8. 8.
    Jolliffe, I. T., Principal Component Analysis, Springer, New York, 1986.Google Scholar
  9. 9.
    Pearson, K., ‘On lines and planes of closest fit to systems of points in space’, Philosophical Magazine 2, 1901, 559–572.Google Scholar
  10. 10.
    Hotelling, H., ‘Analysis of a complex of statistical variables into principal components’, Journal of Educational Psychology 24, 1933, 417–441, 498–520.Google Scholar
  11. 11.
    Watanabe, S., ‘Karhunen-Loéve expansion and factor analysis theoretical remarks and applications’, in Proceedings of the 4th Conference on Information Theory, Prague, Czech Republic, 1965.Google Scholar
  12. 12.
    Mees, A. I., Rapp, P. E., and Jennings, L. S., ‘Singular value decomposition and embedding dimension’, Physical Review A 36, 1987, 340–346.CrossRefPubMedGoogle Scholar
  13. 13.
    Ravindra, B., ‘Comments on “On the physical interpretation of proper orthogonal modes in vibrations’”, Journal of Sound and Vibration 219, 1999, 189–192.CrossRefGoogle Scholar
  14. 14.
    Liang, Y. C., Lee, H. P., Lim, S. P., Lin, W. Z., Lee, K. H., and Wu, C. G., ‘Proper orthogonal decomposition and its applications, Part I: Theory’, Journal of Sound and Vibration 252, 2002, 527–544.CrossRefGoogle Scholar
  15. 15.
    Wu, C. G., Liang, Y. C., Lin, W. Z., Lee, H. P., and Lim, S. P., ‘A note on equivalence of proper orthogonal decomposition methods’, Journal of Sound and Vibration 265, 2003, 1103–1110.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Holmes, P., Lumley, J. L., and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge, New York, 1996.Google Scholar
  17. 17.
    Wax, M. and Kailath, T., ‘Detection of signals by information theoretic criteria’, IEEE Transactions on Acoustics, Speech and Signal Processing 33, 1985, 387–392.Google Scholar
  18. 18.
    Graham, M. D. and Kevrekedis, I. G., ‘Alternative approaches to the Karhunen–Loeve decomposition for model reduction and data analysis’, Computers and Chemical Engineering 20, 1996, 495–506.CrossRefGoogle Scholar
  19. 19.
    Bayly, P. V., Johnson, E. E., Wolf, P. D., Smith, W. M., and Ideker, R. E., ‘Predicting patterns of epicardial potentials during ventricular fibrillation’, IEEE Transactions on Biomedical Engineering 42, 1995, 898–907.CrossRefPubMedGoogle Scholar
  20. 20.
    Epureanu, B. I., Hall, K. C., and Dowell, E. H., ‘Reduced-order models of unsteady viscous flows in turbomachinery using viscous-inviscid coupling’, Journal of Fluids and Structures 15, 2001, 255–273.CrossRefGoogle Scholar
  21. 21.
    Barnston, A. G. and Ropelewski, C. F., ‘Prediction of ENSO episodes using canonical correlation analysis’, Journal of Climate 5, 1992, 1316–1345.CrossRefGoogle Scholar
  22. 22.
    Leen, T. K., Rudnick, M., and Hammerstrom, R., ‘Hebbian feature discovery improves classifier efficiency’, in Proceedings of the IJCNN, IEEE, Piscataway, NJ, 1990, pp. 51–56.Google Scholar
  23. 23.
    Fitzsimons, P. M. and Rui, C., ‘Determining low dimensional models of distributed systems’, in Advances in Robust and Nonlinear Control Systems, ASME DSC 53, 1993.Google Scholar
  24. 24.
    Cusumano, J. P. and Bai, B. Y., ‘Period-infinity periodic motions, chaos and spatial coherence in a 10-degree-of-freedom impact oscillator’, Chaos, Solitons and Fractals 3, 1993, 515–535.Google Scholar
  25. 25.
    Cusumano, J. P., Sharkady, M. T., and Kimble, B. W., ‘Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator’, Philosophical Transactions of the Royal Society of London 347, 1994, 421–438.Google Scholar
  26. 26.
    Kreuzer, E. and Kust, O., ‘Analysis of long torsional strings by proper orthogonal decomposition’, Archive of Applied Mechanics 67, 1996, 68–80.CrossRefGoogle Scholar
  27. 27.
    Azeez, M. F. A. and Vakakis, A. F., ‘Proper orthogonal decomposition of a class of vibroimpact oscillations’, Journal of Sound and Vibration 240, 2001, 859–889.CrossRefGoogle Scholar
  28. 28.
    Al-Dmour, A. S. and Mohammad, K. S., ‘Active control of flexible structures using principal component analysis in the time domain’, Journal of Sound and Vibration 253, 2002, 545–569.CrossRefMathSciNetGoogle Scholar
  29. 29.
    Benguedouar, A., ‘Proper Orthogonal Decomposition in Dynamical Modeling: A Qualitative Dynamic Approach’, PhD thesis, Boston University, Boston, MA, 1995.Google Scholar
  30. 30.
    Epureanu, B. I., Tang, L. S., and Paidoussis, M. P., ‘Coherent structures and their influence on the dynamics of aeroelastic panels’, International Journal of Non-Linear Mechanics 39, 2004, 977–991.CrossRefGoogle Scholar
  31. 31.
    De Boe, P. and Golinval, J. C., ‘Principal component analysis of a piezo-sensor array for damage localization’, Structural Health Monitoring 2, 2003, 137–152.CrossRefGoogle Scholar
  32. 32.
    Feldmann, U., Kreuzer, E., and Pinto, F., ‘Dynamic diagnosis of railway tracks by means of the Karhunen–Loève transformation’, Nonlinear Dynamics 22, 2000, 183–193.CrossRefGoogle Scholar
  33. 33.
    Tumer, I. Y., Wood, K. L., and Busch-Vishniac, I. J., ‘Monitoring of signals from manufacturing processes using K-L transform’, Mechanical Systems and Signal Processing 14, 2000, 1011–1026.CrossRefGoogle Scholar
  34. 34.
    Georgiou, I. T. and Schwartz, I. B., ‘Dynamics of large scale coupled structural-mechanical systems: A singular perturbation proper orthogonal decomposition approach’, SIAM Journal of Applied Mathematics 59, 1999, 1178–1207.CrossRefGoogle Scholar
  35. 35.
    Georgiou, I. T., ‘Invariant manifolds, nonclassical normal modes, and proper orthogonal modes in the dynamics of the flexible spherical pendulum’, Nonlinear Dynamics 25, 2001, 3–31.CrossRefGoogle Scholar
  36. 36.
    Kappagantu, R. and Feeny, B. F., ‘Part 1: Dynamical characterization of a frictionally excited beam’, Nonlinear Dynamics 22, 2000, 317–333.CrossRefGoogle Scholar
  37. 37.
    Kappagantu, R. and Feeny, B. F., ‘Part 2: Proper orthogonal modal modeling of a frictionally excited beam’, Nonlinear Dynamics 23, 2000, 1–11.CrossRefGoogle Scholar
  38. 38.
    Ma, X. and Vakakis, A. F., ‘Nonlinear transient localization and beat phenomena due to backlash in a coupled flexible system’, Journal of Vibration and Acoustics 123, 2001, 36–44.CrossRefGoogle Scholar
  39. 39.
    Alaggio, R. and Rega, G., ‘Characterizing bifurcations and classes of motion in the transition to chaos through 3D-Tori of a continuous experimental system in solid mechanics’, Physica D 137, 2000, 70–93.Google Scholar
  40. 40.
    Rega, G. and Alaggio, R., ‘Spatio-temporal dimensionality in the overall complex dynamics of an experimental cable/mass system’, International Journal of Solids and Structures 38, 2001, 2049–2068.CrossRefGoogle Scholar
  41. 41.
    Alaggio, R. and Rega, G., ‘Exploiting results of experimental nonlinear dynamics for reduced-order modeling of a suspended cable’, in Proceedings of the 18th Biennal Conference on Mechanical Vibration and Noise – ASME DETC, Pittsburgh, PA, 2001.Google Scholar
  42. 42.
    Hemez, F. M. and Doebling, S. W., ‘Review and assessment of model updating for non-linear, transient dynamics’, Mechanical Systems and Signal Processing 15, 2001, 45–73.CrossRefGoogle Scholar
  43. 43.
    Lenaerts, V., Kerschen, G., and Golinval, J. C., ‘Identification of a continuous structure with a geometrical non-linearity, Part II: Proper orthogonal decomposition’, Journal of Sound and Vibration 262, 2003, 907–919.CrossRefGoogle Scholar
  44. 44.
    Feeny, B. F., ‘On proper orthogonal co-ordinates as indicators of modal activity’, Journal of Sound and Vibration 255, 2002, 805–817.CrossRefGoogle Scholar
  45. 45.
    Han, S. and Feeny, B. F., ‘Application of proper orthogonal decomposition to structural vibration analysis’, Mechanical Systems and Signal Processing 17, 2003, 989–1001.CrossRefGoogle Scholar
  46. 46.
    Quaranta, G., Mantegazza, P., and Masarati, P., ‘Assessing the local stability of periodic motions for large multibody non-linear systems using proper orthogonal decomposition’, Journal of Sound and Vibration 271, 2004, 1015–1038.CrossRefMathSciNetGoogle Scholar
  47. 47.
    Azeez, M. F. A. and Vakakis, A. F., ‘Numerical and experimental analysis of a continuous overhang rotor undergoing vibro-impacts’, International Journal of Non-Linear Mechanics 34, 1999, 415–435.Google Scholar
  48. 48.
    Kappagantu, R. and Feeny, B. F., ‘An optimal modal reduction of a system with frictional excitation’, Journal of Sound and Vibration 224, 1999, 863–877.CrossRefGoogle Scholar
  49. 49.
    Liang, Y. C., Lin, W. Z., Lee, H. P., Lim, S. P., Lee, K. H., and Sun, H., ‘Proper orthogonal decomposition and its applications, Part II: Model reduction for MEMS dynamical analysis’, Journal of Sound and Vibration 256, 2002, 515–532.CrossRefGoogle Scholar
  50. 50.
    Ma, X., Vakakis, A. F., and Bergman, L. A., ‘Karhunen-Loève modes of a truss: Transient response reconstruction and experimental verification’, AIAA Journal 39, 2001, 687–696.Google Scholar
  51. 51.
    Ma, X. and Vakakis, A. F., ‘Karhunen–Loève decomposition of the transient dynamics of a multibay truss’, AIAA Journal 37, 1999, 939–946.Google Scholar
  52. 52.
    Steindl, A. and Troger, H., ‘Methods for dimension reduction and their application in nonlinear dynamics’, International Journal of Solids and Structures 38, 2001, 2131–2147.CrossRefGoogle Scholar
  53. 53.
    Friswell, M. and Inman, D. J., ‘Sensor validation for smart structures’, Journal of Intelligent Material Systems and Structures 10, 1999, 973–982.CrossRefGoogle Scholar
  54. 54.
    Kerschen, G., De Boe, P., Golinval, J. C., and Worden, K., ‘Sensor validation using principal component analysis’, Smart Materials and Structures 14, 2005, 36–42.CrossRefGoogle Scholar
  55. 55.
    Ghanem, R. and Spanos, P., Stochastic Finite Elements: A Spectral Approach, Springer, Heidelberg, Germany, 1991.Google Scholar
  56. 56.
    Li, R. and Ghanem, R., ‘Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration’, Probabilistic Engineering Mechanics 13, 1998, 125–136.CrossRefGoogle Scholar
  57. 57.
    Sarkar, A. and Ghanem, R., ‘Mid-frequency structural dynamics with parameter uncertainty’, Computer Methods in Applied Mechanics and Engineering 191, 2002, 5499–5513.CrossRefGoogle Scholar
  58. 58.
    Schenk, C. A. and Schueller, G. I., ‘Buckling analysis of cylindrical shells with random geometric imperfections’, International Journal of Non-Linear Mechanics 38, 2003, 1119–1132.CrossRefGoogle Scholar
  59. 59.
    Sirovich, L., ‘Turbulence and the dynamics of coherent structures, Part I: Coherent structures’, Quarterly of Applied Mathematics 45, 1987, 561–571.Google Scholar
  60. 60.
    Meirovitch, L., Computational Methods in Structural Dynamics, Sijthoff and Noordhoff, Alphen a/d Rijn, The Netherlands, 1980.Google Scholar
  61. 61.
    Morrison, D. F., Multivariate Statistical Methods, McGraw-Hill, New York, 1967.Google Scholar
  62. 62.
    Golub, G. H. and Van Loan, C. F., Matrix Computations, The Johns Hopkins University Press, London, 1996.Google Scholar
  63. 63.
    Otte, D., ‘Development and Evaluation of Singular Value Analysis Methodologies for Studying Multivariate Noise and Vibration Problems’, PhD thesis, Katholieke Universiteit Leuven, Belgium, 1994.Google Scholar
  64. 64.
    Staar, J., ‘Concepts for Reliable Modeling of Linear Systems With Application to On-Line Identification of Multivariate State Space Descriptions’, PhD thesis, Katholieke Universiteit Leuven, Belgium, 1982.Google Scholar
  65. 65.
    Oja, E., ‘A simplified neuron model as a principal component analyzer’, Journal of Mathematical Biology 15, 1982, 267–273.CrossRefPubMedGoogle Scholar
  66. 66.
    Oja, E., ‘Neural networks, principal components and subspaces’, International Journal of Neural Systems 1, 1989, 61–68.CrossRefGoogle Scholar
  67. 67.
    Sanger, T. D., ‘Optimal unsupervised learning in a single linear feedforward neural network’, Neural Networks 2, 1989, 459–473.CrossRefGoogle Scholar
  68. 68.
    Baldi, P. and Hornik, K., ‘Neural networks and principal component analysis: Learning from examples without local minima’, Neural Networks 2, 1989, 53–58.CrossRefGoogle Scholar
  69. 69.
    Kramer, M. A., ‘Nonlinear principal component analysis using autoassociative neural networks’, AIChE Journal 37, 1991, 233–243.CrossRefGoogle Scholar
  70. 70.
    North, G. R., ‘Empirical orthogonal functions and normal modes’, Journal of the Atmospheric Sciences 41, 1984, 879–887.CrossRefGoogle Scholar
  71. 71.
    Davies, M. A. and Moon, F. C., ‘Solitons, chaos and modal interactions in periodic structures’, in Nonlinear Dynamics: The Richard Rand 50th Anniversary Volume, World Scientific, Singapore, 1997.Google Scholar
  72. 72.
    Feeny, B. F. and Kappagantu, R., ‘On the physical interpretation of proper orthogonal modes in vibrations’, Journal of Sound and Vibration 211, 1998, 607–616.CrossRefGoogle Scholar
  73. 73.
    Feeny, B. F., ‘On the proper orthogonal modes and normal modes of continuous vibration systems’, Journal of Vibration and Acoustics 124, 2002, 157–160.CrossRefGoogle Scholar
  74. 74.
    Feeny, B. F. and Liang, Y., ‘Interpreting proper orthogonal modes of randomly excited vibration systems’, Journal of Sound and Vibration 265, 2003, 953–966.CrossRefGoogle Scholar
  75. 75.
    Kerschen, G. and Golinval, J. C., ‘Physical interpretation of the proper orthogonal modes using the singular value decomposition’, Journal of Sound and Vibration 249, 2002, 849–865.CrossRefGoogle Scholar
  76. 76.
    Lin, W. Z., Lee, K. H., Lu, P., Lim, S. P., and Liang, Y. C., ‘The relationship between eigenfunctions of Karhunen-Loève decomposition and the modes of distributed parameter vibration system’, Journal of Sound and Vibration 252, 2002, 527–544.CrossRefGoogle Scholar
  77. 77.
    Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuk, V. N., and Zevin, A. A., Normal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.Google Scholar
  78. 78.
    Emaci, E., Azeez M. A. F., and Vakakis, A. F., ‘Dynamics of trusses: Numerical and experimental results’, Journal of Sound and Vibration 214, 1998, 953–964.CrossRefGoogle Scholar
  79. 79.
    Kerschen, G., Feeny, B. F., and Golinval, J. C., ‘On the exploitation of chaos to build reduced-order models’, Computer Methods in Applied Mechanics and Engineering 192, 2003, 1785–1795.CrossRefGoogle Scholar
  80. 80.
    Ma, X., ‘Order Reduction, Identification and Localization Studies of Dynamical Systems’, PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2000.Google Scholar
  81. 81.
    Jordan, C., ‘Essai sur la géométrie à n dimensions’, Bulletin de la Société mathématique 3, 1875, 103–174.Google Scholar
  82. 82.
    De Cock, K., Principal Angles in System Theory, Information Theory and Signal Processing, PhD thesis, Katholieke Universiteit Leuven, Belgium, 2002.Google Scholar
  83. 83.
    Kambhatla, N., ‘Local Models and Gaussian Mixture Models for Statistical Data Processing’, PhD thesis, Oregon Graduate Institute of Science & Technology, OR, 1996.Google Scholar
  84. 84.
    Sohn, H., Worden, K., and Farrar, C. R., ‘Statistical damage classification under changing environmental and operational conditions’, Journal of Intelligent Material Systems and Structures 13, 2002, 561–574.Google Scholar
  85. 85.
    Kerschen, G. and Golinval, J. C., ‘Non-linear generalisation of principal component analysis: From a global to a local approach’, Journal of Sound and Vibration 254, 2002, 867–876.CrossRefMathSciNetGoogle Scholar
  86. 86.
    Kerschen, G. and Golinval, J. C., ‘A model updating strategy of non-linear vibrating structures’, International Journal for Numerical Methods in Engineering 60, 2004.Google Scholar
  87. 87.
    Kerschen, G. and Golinval, J. C., ‘Feature extraction using auto-associative neural networks’, Smart Materials and Structures 13, 2004, 211–219.CrossRefGoogle Scholar
  88. 88.
    Hyvarinen, A., Karhunen, J., and Oja, E., Independent Component Analysis, Wiley, New York, 2001.Google Scholar
  89. 89.
    Roan, M. J., Erling, J. G., and Sibul, L. H., ‘A new, non-linear, adaptive, blind source separation approach to gear tooth failure detection and analysis’, Mechanical Systems and Signal Processing 16, 2002, 719–740.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Gaetan Kerschen
    • 1
    • 5
    • 6
    Email author
  • Jean-claude Golinval
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Materials, Mechanical and Aerospace EngineeringUniversity of LiègeLiègeBelgium
  2. 2.Division of MechanicsNational Technical University of AthensAthensGreece
  3. 3.Department of Mechanical and Industrial Engineering (adjunct), Department of Aerospace Engineering (adjunct)University of Illinois at Urbana-ChampaignIllinoisU.S.A.
  4. 4.Department of Aerospace EngineeringUniversity of Illinois at Urbana-ChampaignIllinoisU.S.A.
  5. 5.Postdoctoral fellowNational Technical University of AthensAthensGreece
  6. 6.University of Illinois at Urbana-ChampaignIllinoisU.S.A.

Personalised recommendations