Advertisement

Nonlinear Dynamics

, Volume 42, Issue 2, pp 175–184 | Cite as

Application of Jacobian Elliptic Functions to the Analysis of the Steady-State Solution of the Damped Duffing Equation with Driving Force of Elliptic Type

  • Alex Elías-Zúñiga
Article

Abstract

In this work, Jacobian elliptic functions are applied to obtain the approximate steady-state solution of the damped Duffing equation with driving force of elliptic type. We assume that the damping coefficient and the nonlinear term need not be small. Numerical comparison between the approximate solution and the numerical integration indicates that our proposed approximate steady-state solution captures well the amplitude-time vibrational response. We have also found that for a certain range of values of the driving frequency ω f and for a stiff spring, there are one, three, or five possible motions for the elliptic excitation amplitude-frequency response curve.

Keywords

damped system elliptic integrals Floquet theory Jacobi elliptic functions nonlinear vibrations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elías-Zuñiga, A., Absorber Control of the Finite Amplitude Nonlinear Vibrations of a Simple Shear Suspension System, Ph.D. Dissertation, University of Nebraska-Lincoln, NE, 1994.Google Scholar
  2. 2.
    Elías-Zuñiga, A., ‘On the elliptic balance method’, Mathematics and Mechanics of Solids 8, 2003, 263–279.CrossRefGoogle Scholar
  3. 3.
    Hsu, C. S., ‘On the application of elliptic functions in nonlinear forced oscillations’, Quarterly of Applied Mathematics 17, 1960, 393–407.Google Scholar
  4. 4.
    Iwan, W. D., ‘On defining equivalent systems for certain ordinary non-linear differential equations’, International Journal of Non-Linear Mechanics 4, 1969, 325–334.CrossRefGoogle Scholar
  5. 5.
    Detinko, F. M., ‘Applications of Jacobian elliptic functions to the analysis of forced vibrations of a non-linear conservative system’, Mechanics of Solids 31(4), 1996, 5–8.Google Scholar
  6. 6.
    Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1979.Google Scholar
  7. 7.
    Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Physicists, Springer, New York, 1953.Google Scholar
  8. 8.
    van Dooren, R., ‘On the transition from regular to chaotic behaviour in the Duffing oscillator’, Journal of Sound and Vibration 123(2), 1988, 327–339.Google Scholar
  9. 9.
    Elías-Zúñiga, A., ‘Analysis of a beam-column system under varying axial forces el elliptic type: The exact solution of Lamés equation’, International Journal of Solids and Structures 41, 2004, 2155–2163.CrossRefGoogle Scholar
  10. 10.
    Rand, R. H., ‘On the stability of Hill's equation with four independent parameters’, Journal of Applied Mechanics 1969, 885–886.Google Scholar
  11. 11.
    Simakhina, S. V. and Tier, C., ‘Computing the stability regions of Hill's equation’, Applied Mathematics and Computation 162(2), 2005, 639–660.CrossRefGoogle Scholar
  12. 12.
    Klotter, K. and Kotowski, G., ‘Über die Stabilität von Lösungen Hillscher Differentialgleichungen mit drei unabhängigen Parametern’, Zeitschrift für Angewandte Mathematik und Mechanik 1943, 149–155.Google Scholar
  13. 13.
    Rand, R. H., Lecture Notes on Nonlinear Vibrations, a free on-line book available at http://www.tam.cornell.edu/randdocs/nlvib36a.pdf, 2001.

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Departamento de Ingeniería MecánicaInstituto Tecnológico y de Estudios Superiores de MonterreyMonterreyMéxico

Personalised recommendations