Advertisement

A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile

  • Juan GonzálezEmail author
  • Gabriel González
  • Rafael Aránguiz
  • Diego Melgar
  • Natalia Zamora
  • Mahesh N. Shrivastava
  • Ranjit Das
  • Patricio A. Catalán
  • Rodrigo Cienfuegos
Original Paper

Abstract

The southern Peru and northern Chile coastal region is an active subduction zone that contains one of the most significant seismic gaps in the eastern Pacific basin (~ 17°S–~ 24°S). Although the gap was partially filled by the 2014 Mw 8.1 Iquique earthquake, there is still a high seismogenic potential to release a Mw ~ 9 earthquake in the near future; therefore, all the near-field coastal cities in the region face a latent tsunami threat. In this article, we propose a hybrid deterministic–stochastic multi-scenario approach to assess the current tsunami hazard level in the city of Iquique, an important commercial and industrial center of northern Chile that is home to 184,000 inhabitants. In our approach, we defined 400 stochastic, 10 deterministic and 10 homogeneous tsunamigenic earthquake scenarios, covering the entire area of the seismic gap. Based on the regional distribution of gravity anomalies and published interseismic coupling distributions, we interpreted the occurrence of four major asperities in the subduction interface of the seismic gap. The asperity pattern was used to construct a group of deterministic slip-deficit earthquake sources with seismic magnitudes ranging between Mw 8.4 and Mw 8.9. Additionally, we constructed 10 homogeneous slip scenarios to generate an inundation baseline for the tsunami hazard. Subsequently, following a stochastic scheme, we implemented a Karhunen–Loève expansion to generate 400 stochastic earthquake scenarios within the same magnitude range as the deterministic slip-deficit sources. All sources were used as earthquake scenarios to simulate the tsunami propagation and inundation by means of a non-hydrostatic model (Neowave 2D) with a classical nesting scheme for the city of Iquique. We obtained high-resolution data for flow depth, coastal surface currents and sea level elevation. The results suggest that the peak slip location and shelf resonance play an important role in the calculated coastal flow depths. The analysis of the entire set of simulated stochastic earthquake scenarios indicates that the worst-case scenario for Iquique is a Mw 8.9 earthquake. This scenario presented a tsunami arrival time of ~ 12 min, which is critical for the evacuation process. In addition, the maximum wave height and tsunami flow depth were found to be ~ 10 m and ~ 24 m, respectively. The observed coastal resonance processes exhibit at least three destructive tsunami wave trains. Based on historical and instrumental catalog statistics, the recurrence time of the credible worst-case earthquake scenario for Iquique (Mw 8.9) is 395 years, with a probability of occurrence of ~ 11.86% in the next 50 years.

Keywords

Earthquake scenarios Tsunami hazard assessment Southern Peru Northern Chile 

Notes

Acknowledgements

This research has been funded by a Ph.D. scholarship awarded by Universidad Católica del Norte, Antofagasta, and the CONICYT FONDAP Program through Grant No. 1511017. We acknowledge the National Hydrographic and Oceanographic Service of the Chilean Navy for providing the local topography and bathymetric database used in the tsunami simulations. LIDAR high-resolution topography for Iquique was acquired through the JICA-JST SATREPS tsunami collaboration project, “Enhancement of Technology to Develop Tsunami-Resilient Community,” between Chile and Japan. Global bathymetry data were extracted from GEBCO (http://www.gebco.net). Intensive tsunami modeling was supported by the supercomputing infrastructure of the National Laboratory for High Performance Computing (NLHPC/ECM-02) and the technical support of Mr. Diego Urrutia (Department of System and Computation Engineering, Universidad Católica del Norte, Antofagasta). We are thankful to Dr. Gonzalo Yáñez (Engineering School, Pontificia Universidad Católica de Chile, Santiago) for introducing the trench-parallel gravity anomaly (TPGA) methodology. Our acknowledgements to Dr. Roberto Benavente (Department of Civil Engineering, Universidad Católica de la Santísima Concepción) and Mr. Alejandro Urrutia (Research Center for Integrated Disaster Risk Management) for the valuable and fruitful comments. N. Zamora has been funded by the Fondecyt No. 3170895. Research funding for M.N. Shrivastava was provided by Fondecyt No. 3160773.

Supplementary material

11069_2019_3809_MOESM1_ESM.docx (27.6 mb)
Supplementary material 1 (DOCX 28260 kb)

References

  1. Aguirre P, Vásquez J, de la Llera JC, González J, González G (2018) Earthquake damage assessment for deterministic scenarios in Iquique, Chile. Nat Hazards 92(3):1433–1461.  https://doi.org/10.1007/s11069-018-3258-3 CrossRefGoogle Scholar
  2. Aki K (1965) Maximum Likelihood estimate of b in the formula log N = a-bM and its confidence limits. Bull Earthq Res Inst 43:237–239Google Scholar
  3. Allen TI, Hayes GP (2017) Alternative rupture-scaling relationships for subduction interface and other offshore environments. Bull Seismol Soc Am 107(3):1240–1253.  https://doi.org/10.1785/0120160255 CrossRefGoogle Scholar
  4. An C, Liu PLF (2014) Characteristics of leading tsunami waves generated in three recent tsunami events. J Earthq Tsunami 8(3):1440001.  https://doi.org/10.1142/S1793431114400016 CrossRefGoogle Scholar
  5. Aránguiz R, González G, González J, Catalán PA, Cienfuegos R, Yagi Y, Okuwaki R, Urra L, Contreras K, Del Rio I, Rojas C (2016) The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure Appl Geophys 173(2):333–348.  https://doi.org/10.1007/s00024-015-1225-4 CrossRefGoogle Scholar
  6. Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ, Willis P, Peltier WR, Owen SE (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys J Int 180(3):913–960.  https://doi.org/10.1111/j.1365-246X.2009.04463.x CrossRefGoogle Scholar
  7. Bai Y, Cheung KF, Yamazaki Y, Lay T, Ye L (2014) Tsunami surges around the Hawaiian Islands from the 1 April 2014 North Chile Mw 8.1 earthquake. Geophys Res Lett 41(23):8512–8521.  https://doi.org/10.1002/2014GL061686 CrossRefGoogle Scholar
  8. Béjar-Pizarro M, Carrizo D, Socquet A, Armijo R, Barrientos S, Bondoux F, Bonvalot S, Campos J, Comte D, De Chabalier JB, Charade O, Delorme A, Gabalda G, Galetzka J, Genrich J, Nercessian A, Olcay M, Ortega F, Ortega I, Remy D, Ruegg JC, Simons M, Valderas C, Vigny C (2010) Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophys J Int 183(1):390–406.  https://doi.org/10.1111/j.1365-246X.2010.04748.x CrossRefGoogle Scholar
  9. Blaser L, Krüger F, Ohrnberger M, Scherbaum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100(6):2914–2926.  https://doi.org/10.1785/0120100111 CrossRefGoogle Scholar
  10. Catalán PA, Aránguiz R, González G, Tomita T, Cienfuegos R, González J, Shrivastava MN, Kumagai K, Mokrani C, Cortés P, Gubler A (2015) The 1 April 2014 Pisagua tsunami: observations and modeling. Geophys Res Lett 42(8):2918–2925.  https://doi.org/10.1002/2015GL063333 CrossRefGoogle Scholar
  11. Cheung KF, Wei Y, Yamazaki Y, Yim SC (2011) Modeling of 500-year tsunamis for probabilistic design of coastal infrastructure in the Pacific Northwest. Coast Eng 58(10):970–985.  https://doi.org/10.1016/j.coastaleng.2011.05.003 CrossRefGoogle Scholar
  12. Cheung KF, Bai Y, Yamazaki Y (2013) Surges around the Hawaiian Islands from the 2011 Tohoku Tsunami. J Geophys Res Oceans 118(10):5703–5719.  https://doi.org/10.1002/jgrc.20413 CrossRefGoogle Scholar
  13. Chlieh M, Avouac JP, Hjorleifsdottir V, Song TRA, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L, Bock Y, Galetzka J (2007) Coseismic slip and afterslip of the great Mw 9.15 Sumatra–Andaman earthquake of 2004. Bull Seismol Soc Am 97(1A):S152–S173.  https://doi.org/10.1785/0120050631 CrossRefGoogle Scholar
  14. Chlieh M, Perfettini H, Tavera H, Avouac JP, Remy D, Nocquet JM, Rolandone F, Bondoux F, Gabalda G, Bonvalot S (2011) Interseismic coupling and seismic potential along the Central Andes subduction zone. J Geophys Res 116(B12):1–21.  https://doi.org/10.1029/2010JB008166 CrossRefGoogle Scholar
  15. Comte D, Pardo M (1991) Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Nat Hazards 4(1):23–44.  https://doi.org/10.1007/BF00126557 CrossRefGoogle Scholar
  16. Cortés P, Catalán PA, Aránguiz R, Bellotti G (2017) Tsunami and shelf resonance on northern Chile coast. J Geophys Res Oceans 122(9):7364–7379CrossRefGoogle Scholar
  17. Das R, Wason HR, Gonzalez G, Sharma ML, Choudhury D, Lindholm C, Roy N, Salazar P (2018) Earthquake magnitude conversion problem. Bull Seismol Soc Am 108(4):1995–2007.  https://doi.org/10.1785/0120170157 CrossRefGoogle Scholar
  18. Delouis B, Monfret T, Dorbath L, Pardo M, Rivera L, Comte D, Haessler H, Caminade JP, Ponce L, Kausel E, Cisternas A (1997) The Mw = 8.0 Antofagasta (northern Chile) earthquake of 30 July 1995: a precursor to the end of the large 1877 gap. Bull Seismol Soc Am 87(2):427–445Google Scholar
  19. Dorbath L, Cisternas A, Dorbath C (1990) Assessment of the size of large and great historical earthquakes in Peru. Bull Seismol Soc Am 80(3):551–576Google Scholar
  20. Ezersky A, Tiguercha D, Pelinovsky E (2013) Resonance phenomena at the long wave run-up on the coast. Nat Hazards Earth Syst Sci 13(11):2745–2752.  https://doi.org/10.5194/nhess-13-2745-2013 CrossRefGoogle Scholar
  21. Farr T, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45(2):1–33.  https://doi.org/10.1029/2005RG000183.1.INTRODUCTION CrossRefGoogle Scholar
  22. Fletcher HJ, Beavan J, Freymueller JT, Gilbert L (2001) High interseismic coupling of the Alaska subduction zone SW of Kodiak island inferred from GPS data. Geophys Res Lett 28(3):443–446CrossRefGoogle Scholar
  23. Frigo M, Johnson SG (1998) FFTW: an adaptive software architecture for the FFT. In: ICASSP, IEEE international conference on acoustics, speech and signal processing—proceedings, vol 3, pp 1381–1384.  https://doi.org/10.1109/ICASSP.1998.681704
  24. Geist EL (1998) Local tsunamis and earthquake source parameters. Adv Geophys 39:117–209CrossRefGoogle Scholar
  25. Geist EL (2002) Complex earthquake rupture and local tsunamis. J Geophys Res 107(B5):1–16.  https://doi.org/10.1029/2000JB000139/full CrossRefGoogle Scholar
  26. Geist EL, Dmowska R (1999) Local tsunamis and distributed slip at the source. Pure Appl Geophys 154:485–512.  https://doi.org/10.1007/978-3-0348-8679-6_6 CrossRefGoogle Scholar
  27. Guibourg S, Heinrich P, Roche R (1997) Numerical modeling of the 1995 Chilean tsunami. Impact on French Polynesia. Geophys Res Lett 24(7):775–778CrossRefGoogle Scholar
  28. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188Google Scholar
  29. Hayes GP (2017) The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth Planet Sci Lett 468:94–100.  https://doi.org/10.1016/j.epsl.2017.04.003 CrossRefGoogle Scholar
  30. Hayes GP, Wald DJ, Johnson RL (2012) Slab1.0: a three-dimensional model of global subduction zone geometries. J Geophys Res 117(B1):1–15.  https://doi.org/10.1029/2011JB008524 CrossRefGoogle Scholar
  31. Hayes GP, Herman MW, Barnhart WD, Furlong KP, Riquelme S, Benz HM, Bergman E, Barrientos S, Earle PS, Samsonov SV (2014) Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature 512(7514):295–299.  https://doi.org/10.1038/nature13677 CrossRefGoogle Scholar
  32. Heidarzadeh M, Satake K (2014) Excitation of basin-wide modes of the pacific ocean following the march 2011 tohoku tsunami. Pure Appl Geophys 171(12):3405–3419.  https://doi.org/10.1007/s00024-013-0731-5 CrossRefGoogle Scholar
  33. Heidarzadeh M, Satake K, Murotani S, Gusman AR, Watada S (2015) Deep-water characteristics of the trans-Pacific tsunami from the 1 April 2014 Mw 8.2 Iquique, Chile Earthquake. Pure Appl Geophys 172(3–4):719–730.  https://doi.org/10.1007/s00024-014-0983-8 CrossRefGoogle Scholar
  34. Hoffmann F, Metzger S, Moreno M, Deng Z, Sippl C, Ortega-Culaciati F, Oncken O (2018) Characterizing afterslip and ground displacement rate increase following the 2014 Iquique-Pisagua Mw 8.1 earthquake, Northern Chile. J Geophys Res Solid Earth.  https://doi.org/10.1002/2017JB014970 CrossRefGoogle Scholar
  35. Kelleher JA (1972) Rupture zones of large South American earthquakes and some predictions. J Geophys Res 77(11):2087.  https://doi.org/10.1029/JB077i011p02087 CrossRefGoogle Scholar
  36. Kijko A, Smit A (2012) Extension of the Aki–Utsu b-Value estimator for incomplete catalogs. Bull Seismol Soc Am 102(3):1283–1287.  https://doi.org/10.1785/0120110226 CrossRefGoogle Scholar
  37. Lay T, Kanamori H (1981) An asperity model of large earthquake sequences. Earthq Predict 4:579–592.  https://doi.org/10.1029/ME004p0579 CrossRefGoogle Scholar
  38. Lay T, Ye L, Kanamori H, Yamazaki Y, Cheung KF, Ammon CJ (2013) The February 6, 2013 Mw 8.0 Santa Cruz Islands earthquake and tsunami. Tectonophysics 608:1109–1121.  https://doi.org/10.1016/j.tecto.2013.07.001 CrossRefGoogle Scholar
  39. LeVeque RJ, Waagan K, González FI, Rim D, Lin G (2016) Generating random earthquake events for probabilistic tsunami hazard assessment. Pure Appl Geophys 173(12):3671–3692.  https://doi.org/10.1007/s00024-016-1357-1 CrossRefGoogle Scholar
  40. Li L, Switzer AD, Chan CH, Wang Y, Weiss R, Qiu Q (2016) How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: a case study in the South China Sea. J Geophys Res Solid Earth 121(8):6250–6272.  https://doi.org/10.1002/2016JB013111 CrossRefGoogle Scholar
  41. Lomnitz C (2004) Major earthquakes of Chile: a historical survey, 1535–1960. Seismol Res Lett 75(3):368–378CrossRefGoogle Scholar
  42. Lorito S, Romano F, Atzori S, Tong X, Avallone A, McCloskey J, Cocco M, Boschi E, Piatanesi A (2011) Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake. Nat Geosci 4(3):173–177.  https://doi.org/10.1038/ngeo1073 CrossRefGoogle Scholar
  43. Loveless JP, Meade BJ (2016) Two decades of spatiotemporal variations in subduction zone coupling offshore Japan. Earth Planet Sci Lett 436:19–30.  https://doi.org/10.1016/j.epsl.2015.12.033 CrossRefGoogle Scholar
  44. Mai PM, Thingbaijam KKS (2014) SRCMOD: an online database of finite-fault rupture models. Seismol Res Lett 85(6):1348–1357.  https://doi.org/10.1785/0220140077 CrossRefGoogle Scholar
  45. McCann WR, Nishenko SP, Sykes LR, Krause J (1979) Seismic gaps and plate tectonics: seismic potential for major boundaries. Pure Appl Geophys 117(6):1082–1147.  https://doi.org/10.1007/978-3-0348-6430-5_2 CrossRefGoogle Scholar
  46. Melgar D, Ruiz-Angulo A (2018) Long-lived tsunami edge waves and shelf resonance from the M8.2 Tehuantepec earthquake. Geophys Res Lett 45:12414–12421.  https://doi.org/10.1029/2018GL080823 CrossRefGoogle Scholar
  47. Melgar D, LeVeque RJ, Dreger DS, Allen RM (2016) Kinematic rupture scenarios and synthetic displacement data: an example application to the Cascadia subduction zone. J Geophys Res Solid Earth 121(9):6658–6674.  https://doi.org/10.1002/2016JB013314 CrossRefGoogle Scholar
  48. Métois M, Socquet A, Vigny C, Carrizo D, Peyrat S, Delorme A, Maureira E, Valderas-Bermejo MC, Ortega I (2013) Revisiting the north Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys J Int 194(3):1283–1294.  https://doi.org/10.1093/gji/ggt183 CrossRefGoogle Scholar
  49. Métois M, Vigny C, Socquet A (2016) Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18°S). Pure Appl Geophys 173(5):1431–1449.  https://doi.org/10.1007/s00024-016-1280-5 CrossRefGoogle Scholar
  50. Michael AJ (1990) Energy constraints on kinematic models of oblique faulting: Loma Prieta versus Parkfield-Coalinga. Geophys Res Lett 17(9):1453–1456.  https://doi.org/10.1029/GL017i009p01453 CrossRefGoogle Scholar
  51. Milne A (1880) The Peruvian earthquake of 9th May, 1877. Trans Seismol Soc Jpn 2:50–96Google Scholar
  52. Mueller C, Power WL, Fraser SA, Wang X (2015) Effects of rupture complexity on local tsunami inundation: implications for probabilistic tsunami hazard assessment by example. J Geophys Res Solid Earth 120(1):488–502.  https://doi.org/10.1002/2014JB011301 CrossRefGoogle Scholar
  53. Nishenko SP (1985) Seismic potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America: a quantitative reappraisal. J Geophys Res 90(B5):3589–3615.  https://doi.org/10.1029/JB090iB05p03589/full CrossRefGoogle Scholar
  54. Nishimura T, Hirasawa T, Miyazaki SI, Sagiya T, Tada T, Miura S, Tanaka K (2004) Temporal change of interplate coupling in northeastern Japan during 1995–2002 estimated from continuous GPS observations. Geophys J Int 157(2):901–916.  https://doi.org/10.1111/j.1365-246X.2004.02159.x CrossRefGoogle Scholar
  55. Okal EA, Dengler LA, Araya S, Borrero JC, Gomer BM, Koshimura S, Laos G, Olcese D, Ortiz F, Swensson M, Titov VV, Vegas F (2002) Field survey of the Camaná, Perú tsunami of 23 June 2001. Seismol Res Lett 73(6):907–920CrossRefGoogle Scholar
  56. Okal EA, Borrero JC, Synolakis CE (2006) Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bull Seismol Soc Am 96(5):1634–1648.  https://doi.org/10.1785/0120050158 CrossRefGoogle Scholar
  57. Oleskevich DA, Hyndman RD, Wang K (1999) The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J Geophys Res 104(B7):14965–14991.  https://doi.org/10.1029/1999JB900060/full CrossRefGoogle Scholar
  58. Peyrat S, Madariaga R, Buforn E, Campos J, Asch G, Vilotte JP (2010) Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strong-motion data. Geophys J Int 182(3):1411–1430.  https://doi.org/10.1111/j.1365-246X.2010.04685.x CrossRefGoogle Scholar
  59. Piatanesi A, Lorito S (2007) Rupture process of the 2004 Sumatra–Andaman earthquake from tsunami waveform inversion. Bull Seismol Soc Am 97(1):223–231.  https://doi.org/10.1785/0120050627 CrossRefGoogle Scholar
  60. Plafker G (1997) Catastrophic tsunami generated by submarine slides and backarc thrusting during the 1992 earthquake on eastern Flores I., Indonesia. In: Geological Society of America, Cordilleran Section, 93rd Annual Meeting, vol 29, p 57Google Scholar
  61. Pollitz FF, Bürgmann R, Banerjee P (2011) Geodetic slip model of the 2011 M9.0 Tohoku earthquake. Geophys Res Lett 38(7):1–6.  https://doi.org/10.1029/2011GL048632 CrossRefGoogle Scholar
  62. Rosenau M, Nerlich R, Brune S, Oncken O (2010) Experimental insights into the scaling and variability of local tsunamis triggered by giant subduction megathrust earthquakes. J Geophys Res Solid Earth 115(9):1–20.  https://doi.org/10.1029/2009JB007100 CrossRefGoogle Scholar
  63. Ruegg JC, Olcay M, Lazo D (2001) Co-, post- and pre(?)-seismic displacements associated with the Mw 8.4 Southern Peru earthquake of 23 June 2001 from continuous GPS measurements. Seismol Res Lett 72(6):673–678CrossRefGoogle Scholar
  64. Ruiz S, Madariaga R (2018) Historical and recent large megathrust earthquakes in Chile. Tectonophysics 733:37–56.  https://doi.org/10.1016/j.tecto.2018.01.015 CrossRefGoogle Scholar
  65. Ruiz JA, Fuentes MA, Riquelme S, Campos J, Cisternas A (2015) Numerical simulation of tsunami runup in northern Chile based on non-uniform k 22 slip distributions. Nat Hazards 79(2):1177–1198.  https://doi.org/10.1007/s11069-015-1901-9 CrossRefGoogle Scholar
  66. Sandwell DT, Müller RD, Smith WHF, Garcia ES, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67.  https://doi.org/10.1126/science.1258213 CrossRefGoogle Scholar
  67. Scholz CH, Campos J (2012) The seismic coupling of subduction zones revisited. J Geophys Res 117(B5):1–22.  https://doi.org/10.1029/2011JB009003 CrossRefGoogle Scholar
  68. Schurr B, Asch G, Hainzl S, Bedford J, Hoechner A, Palo M, Wang R, Moreno M, Bartsch M, Zhang Y, Oncken O, Tilmann F, Dahm T, Victor P, Barrientos S, Vilotte JP (2014) Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512(7514):299–311.  https://doi.org/10.1038/nature13681 CrossRefGoogle Scholar
  69. Seno T (2014) Stress drop as a criterion to differentiate subduction zones where Mw 9 earthquakes can occur. Tectonophysics 621:198–210.  https://doi.org/10.1016/j.tecto.2014.02.016 CrossRefGoogle Scholar
  70. Sepúlveda I, Liu PLF, Grigoriu M, Pritchard ME (2017) Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location. J Geophys Res Solid Earth 122(9):7252–7271.  https://doi.org/10.1002/2017JB014430 CrossRefGoogle Scholar
  71. Shrivastava MN, González G, Moreno M, Soto H, Schurr B, Salazar P, Báez JC (2019) Earthquake segmentation in northern Chile correlates with curved plate geometry. Sci Rep 9(1):1–10.  https://doi.org/10.1038/s41598-019-40282-6 CrossRefGoogle Scholar
  72. Simons M, Minson SE, Sladen A, Ortega-Culaciati F, Jiang J, Owen SE, Meng L, Ampuero JP, Wei S, Chu R, Helmberger DV, Webb FH (2011) The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries. Science 332(6036):1421–1425.  https://doi.org/10.1126/science.1206731 CrossRefGoogle Scholar
  73. Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55(3):293–305.  https://doi.org/10.1190/1.1442837 CrossRefGoogle Scholar
  74. Sobiesiak M, Meyer U, Schmidt S, Götze HJ, Krawczyk CM (2007) Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta, Chile. J Geophys Res 112(B12):1–11.  https://doi.org/10.1029/2006JB004796 CrossRefGoogle Scholar
  75. Soloviev SL, Go CN (1975) A catalogue of tsunamis on the eastern shore of the Pacific Ocean (1513–1968). Can Transl Fish Aquat Sci 5078(1984):1–294Google Scholar
  76. Song TRA, Simons M (2003) Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301(5633):630–633CrossRefGoogle Scholar
  77. Tavera H, Buforn E, Bernal I, Antayhua Y, Vilacapoma L (2002) The Arequipa (Peru) earthquake of June 23, 2001. J Seismol 6(2):279–283.  https://doi.org/10.1023/A:1015698621075 CrossRefGoogle Scholar
  78. Tinti S, Tonini R, Bressan L, Armigliato AC, Gardi A, Guillande R, Valencia N, Scheer S (2011) Handbook of tsunami hazard and damage scenarios. JRC Sci Tech Rep.  https://doi.org/10.2788/21259 CrossRefGoogle Scholar
  79. Vidal Gormaz F (1878) Algunos datos relativos al terremoto de 9 de mayo de 1877, i a las ajitaciones del mar i de los otros fenómenos ocurridos sobre las costas occidentales de Sud-América. Anuario Hidrográfico de Chile 4:458–480Google Scholar
  80. Vigny C, Socquet A, Peyrat S, Ruegg JC, Métois M, Madariaga R, Morvan S, Lancieri M, Lacassin R, Campos J, Carrizo D, Bejar-Pizarro M, Barrientos S, Armijo R, Aranda C, Valderas-Bermejo MC, Ortega I, Bondoux F, Baize S, Lyon-Caen H, Pavez A, Vilotte JP, Bevis M, Brooks B, Smalley R, Parra H, Baez JC, Blanco M, Cimbaro S, Kendrick EC (2011) The 2010 Mw 8.8 Maule megathrust earthquake of Central Chile, monitored by GPS. Science 332(6036):1417–1421.  https://doi.org/10.1126/science.1204132 CrossRefGoogle Scholar
  81. Villegas-Lanza JC, Chlieh M, Cavalié O, Tavera H, Baby P, Chire J, Nocquet JM (2016) Active tectonics of Peru: heterogeneous interseismic coupling along the Nazca Megathrust, rigid motion of the Peruvian Sliver and Subandean shortening accommodation. J Geophys Res Solid Earth 121(10):7371–7394.  https://doi.org/10.1002/2016JB013080 CrossRefGoogle Scholar
  82. Watanabe S, Bock Y, Melgar D, Tadokoro K (2018) Tsunami scenarios based on interseismic models along the Nankai Trough, Japan from seafloor and onshore geodesy. J Geophys Res Solid Earth 123(3):2448–2461.  https://doi.org/10.1002/2017JB014799 CrossRefGoogle Scholar
  83. Weatherall P, Marks KM, Jakobsson M, Schmitt T, Tani S, Arndt JE, Rovere M, Chayes D, Ferrini V, Wigley R (2015) A new digital bathymetric model of the world’s oceans. Earth Space Sci 2(8):331–345.  https://doi.org/10.1002/2015EA000107 CrossRefGoogle Scholar
  84. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70(4):1337–1346.  https://doi.org/10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  85. Welch BL (1951) On the comparison of several mean values: an alternative approach. Biometrika 38(3–4):330–336.  https://doi.org/10.2307/2332579 CrossRefGoogle Scholar
  86. Wessel P, Smith WHF (2013) Generic mapping tools: improved version released. EOS Trans 94(45):409–410CrossRefGoogle Scholar
  87. Yamazaki Y, Cheung KF (2011) Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophys Res Lett 38(L12):1–8.  https://doi.org/10.1029/2011GL047508 CrossRefGoogle Scholar
  88. Yamazaki Y, Cheung KF, Kowalik Z (2011) Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up. Int J Numer Methods Fluids 61(5):473–497.  https://doi.org/10.1002/fld CrossRefGoogle Scholar
  89. Yamazaki Y, Cheung KF, Lay T (2013) Modeling of the 2011 Tohoku Near-Field Tsunami from Finite-Fault Inversion of Seismic Waves. Bull Seismol Soc Am 103(2B):1444–1455.  https://doi.org/10.1785/0120120103 CrossRefGoogle Scholar
  90. Ye L, Kanamori H, Lay T (2018) Global variations of large megathrust earthquake rupture characteristics. Sci Adv 4(3):1–7CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Juan González
    • 1
    • 2
    Email author
  • Gabriel González
    • 1
    • 2
  • Rafael Aránguiz
    • 1
    • 3
  • Diego Melgar
    • 4
  • Natalia Zamora
    • 1
    • 5
    • 8
  • Mahesh N. Shrivastava
    • 1
    • 2
  • Ranjit Das
    • 1
    • 2
  • Patricio A. Catalán
    • 1
    • 5
    • 6
  • Rodrigo Cienfuegos
    • 1
    • 7
  1. 1.Centro de Investigación para la Gestión Integrada del Riesgo de Desastres CONICYT FONDAP 1511007 (CIGIDEN)SantiagoChile
  2. 2.Departamento de Ciencias GeológicasUniversidad Católica del NorteAntofagastaChile
  3. 3.Departamento de Ingeniería CivilUniversidad Católica de la Santísima ConcepciónConcepciónChile
  4. 4.Department of Earth SciencesUniversity of OregonEugeneUSA
  5. 5.Departamento de Obras CivilesUniversidad Técnica Federico Santa MaríaValparaisoChile
  6. 6.Centro Científico Tecnológico de Valparaíso (CCTVal)Universidad Técnica Federico Santa MaríaValparaisoChile
  7. 7.Departamento de Ingeniería Hidráulica y AmbientalPontificia Universidad Católica de ChileSantiagoChile
  8. 8.CYCLO Millennium NucleusThe Seismic Cycle Along Subduction ZonesValdiviaChile

Personalised recommendations