Advertisement

Incorporating inland flooding into hurricane evacuation decision support modeling

  • Kun Yang
  • Rachel A. DavidsonEmail author
  • Humberto Vergara
  • Randall L. Kolar
  • Kendra M. Dresback
  • Brian A. Colle
  • Brian Blanton
  • Tricia Wachtendorf
  • Jennifer Trivedi
  • Linda K. Nozick
Original Paper

Abstract

Formal engineering hurricane evacuation studies have not typically considered inland flooding explicitly, though it has been shown repeatedly to be a major cause of damage and loss of life in hurricanes. In addition, coastal flooding and strong winds are often treated in a decoupled manner, so that the correlation between them is not captured. The recently introduced Integrated Scenario-based Evacuation (ISE) computational framework offers one approach to achieving evacuation decision support based on a representation of the hazard that considers coastal flooding, inland flooding, and wind in an integrated manner. Using a case study application of the ISE framework for Hurricane Matthew (2016) approaching the North Carolina coast, we evaluate the influence of including inland flooding on the resulting recommended evacuation plan (where and when official evacuation orders are to be issued) and the plan’s performance in terms of risk reduction and travel time increase. Results provide insight into managing hurricane evacuation with consideration of inland flooding. They suggest that in some cases inland areas should be evacuated just as coastal areas are; the scenarios responsible for and the timing of inland flooding can differ from those for coastal areas; the response to the different hazards should be treated together as a system because they can interact in complex ways; and planning for inland flooding can help reduce risk substantially while not adding much to evacuee travel times because inland evacuees do not have to travel as far to safety.

Keywords

Hurricane Evacuation Inland flood Precipitation Decision support 

Notes

Acknowledgements

The authors thank the National Science Foundation (CMMI-1331269) for financial support of this research. The statements, findings, conclusions are those of the authors and do not necessarily reflect the views of the National Science Foundation. This research was also supported in part through the use of Information Technologies (IT) resources at the University of Delaware, specifically the high-performance computing resources.

References

  1. Afandizadeh S, Jahangiri A, Kalantari N (2013) Identifying the optimal configuration of one-way and two-way streets for contraflow operation during an emergency evacuation. Nat Hazards 69(3):1315–1334.  https://doi.org/10.1007/s11069-012-0359-2 Google Scholar
  2. Apivatanagul P, Davidson R, Nozick L (2012) Bi-level optimization for risk-based regional hurricane evacuation planning. Nat Hazards 60:567–588.  https://doi.org/10.1007/s11069-011-0029-9 Google Scholar
  3. Atallah EH, Bosart LF (2003) The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon Weather Rev 131(6):1063–1081.  https://doi.org/10.1175/1520-0493(2003)131%3c1063:TETAPD%3e2.0.CO;2 Google Scholar
  4. Atallah EH, Bosart LF, Aiyyer RA (2007) Precipitation distribution associated with landfalling tropical cyclones over the eastern United States. Mon Weather Rev 135(6):2185–2206.  https://doi.org/10.1175/MWR3382.1 Google Scholar
  5. Avila LA, Stewart SR (2013) Atlantic hurricane season of 2011. Mon Weather Rev 141:2577–2596.  https://doi.org/10.1175/MWR-D-12-00230.1 Google Scholar
  6. Bish DR (2011) Planning for a bus-based evacuation. OR Spectrum 33:629–654.  https://doi.org/10.1007/s00291-011-0256-1 Google Scholar
  7. Blake ES, Zelinsky DA (2018) Hurricane Harvey (AL092017) 17 August–1 September 2017. National Hurricane Center Tropical Cyclone Report. https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf
  8. Blanton B, Dresback K, Colle B, Kolar R, Vergara H, Hong Y, Leonardo N, Davidson R, Nozick L, Wachtendorf T (2018) An integrated scenario ensemble-based framework for hurricane evacuation modeling: Part 2–Hazard modeling. Risk Anal.  https://doi.org/10.1111/risa.13004 Google Scholar
  9. Chen X, Zhan FB (2008) Agent-based modelling and simulation of urban evacuation: relative effectiveness of simultaneous and staged evacuation strategies. J Oper Res Soc 59:25–33.  https://doi.org/10.1057/palgrave.jors.2602321 Google Scholar
  10. Chiu YC, Zheng H, Villalobos J, Gautam B (2007) Modeling no-notice mass evacuation using a dynamic traffic flow optimization model. IIE Trans 39:83–94.  https://doi.org/10.1080/07408170600946473 Google Scholar
  11. Chiu YC, Zheng H, Villalobos J, Peacock W, Henk R (2008) Evaluating regional contra-flow and phased evacuation strategies for Texas using a large-scale dynamic traffic assignment simulation and assignment approach. J Homel Secur Emerg Manag 5(1): Article 34.  https://doi.org/10.2202/1547-7355.1409
  12. Cova TJ, Johnson JP (2003) A network flow model for lane-based evacuation routing. Transp Res A 37:579–604.  https://doi.org/10.1016/S0965-8564(03)00007-7 Google Scholar
  13. Czajkowski J, Simmons K, Sutter D (2011) An analysis of coastal and inland fatalities in landfalling US hurricanes. Nat Hazards 59:1513–1531.  https://doi.org/10.1007/s11069-011-9849-x Google Scholar
  14. Czajkowski J, Villarini G, Michel-Kerjan E, Smith JA (2013) Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ Res Lett 8:044056.  https://doi.org/10.1088/1748-9326/8/4/044056 Google Scholar
  15. Davidson R, Nozick L, Wachtendorf T, Blanton B, Colle B, Kolar R, DeYoung S, Dresback K, Yi W, Yang K, Leonardo N (2018) An integrated scenario ensemble-based framework for hurricane evacuation modeling: Part 1—decision support system. Risk Anal.  https://doi.org/10.1111/risa.12990 Google Scholar
  16. Dietrich J, Zijlema M, Westerink J, Holthuijsen L, Dawson C, Luettich R, Jensen R, Smith J, Sellig G, Stone G (2011) Modeling hurricane waves and storm surge using integrally coupled, scalable computations. Coast Eng 58(1):45–65.  https://doi.org/10.1016/j.coastaleng.2010.08.001 Google Scholar
  17. Elsberry RL (2002) Predicting hurricane landfall precipitation: optimistic and pessimistic views from the symposium on precipitation extremes. Bull Am Meteorol Soc 83(9):1333–1344Google Scholar
  18. Georigk M, Grun B (2014) A robust bus evacuation model with delayed scenario information. OR Spectrum 36:923–948.  https://doi.org/10.1007/s00291-014-0365-8 Google Scholar
  19. Goerigk M, Deghdak K, T’Kindt V (2015) A two-stage robustness approach to evacuation planning with buses. Transp Res B 78:66–82.  https://doi.org/10.1016/j.trb.2015.04.008 Google Scholar
  20. Gourley J, Flamig Z, Vergara H, Kirstetter P, Clark R, Argyle E, Arthur A, Martinaitis S, Terti G, Erlingis J, Hong Y, Howard K (2017) The Flooded Locations And Simulated Hydrographs (FLASH) project: improving the tools for flash flood monitoring and prediction across the United States. Bull Am Meteorol Soc 98(2):361–372.  https://doi.org/10.1175/BAMS-D-15-00247.1 Google Scholar
  21. Hamill TM, Bates GT, Whitaker JS, Murray DR, Fiorino M, Galarneau TJ Jr, Lapenta W (2013) NOAA’s second-generation global medium-range ensemble reforecast data set. Bull Am Meteor Soc 94(10):1553–1565.  https://doi.org/10.1175/BAMS-D-12-00014.1 Google Scholar
  22. Huibregtse O, Hegyi A, Hoogendoorn S (2011) Robust optimization of evacuation instructions, applied to capacity, hazard pattern, demand, and compliance uncertainty. In: 2011 International conference on networking, sensing and control, Delft, Netherlands.  https://doi.org/10.1109/ICNSC.2011.5874936
  23. Jiang H, Halverson JB, Simpson J, Zipser EJ (2008) Hurricane “rainfall potential” derived from satellite observations aids overland rainfall prediction. J Appl Meteorol Climatol 47(4):944–959.  https://doi.org/10.1175/2007JAMC1619.1 Google Scholar
  24. Kimms A, Maassen KC (2011) Optimization and simulation of traffic flows in the case of evacuating urban areas. OR Spectrum 33:571–593.  https://doi.org/10.1007/s00291-011-0264-1 Google Scholar
  25. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163.  https://doi.org/10.1038/NGEO779 Google Scholar
  26. Kolen B, Kok M, Helsloot I, Maaskant B (2013) EvacuAid: a probabilistic model to determine the expected loss of life for different mass evacuation strategies during flood threats. Risk Anal 33(7):1312–1333.  https://doi.org/10.1111/j.1539-6924.2012.01932.x Google Scholar
  27. Konrad CE II, Perry LB (2010) Relationships between tropical cyclones and heavy rainfall in the Carolina region of the USA. Intern J Climatol 30:522–534.  https://doi.org/10.1002/joc.1894 Google Scholar
  28. Kulshrestha A, Lou Y, Yin Y (2014) Pick-up locations and bus allocation for transit-based evacuation planning with demand uncertainty. J Adv Transp 48(7):721–733.  https://doi.org/10.1002/atr.1221 Google Scholar
  29. Kunkel KE, Easterling DR, Kristovich DAR, Gleason B, Stoecker L, Smith R (2010) Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys Res Lett 37(24):24706.  https://doi.org/10.1029/2010GL045164 Google Scholar
  30. Li A, Nozick L, Xu N, Davidson R (2012) Shelter location and transportation planning under hurricane conditions. Transp Res E 48:715–729.  https://doi.org/10.1016/j.tre.2011.12.004 Google Scholar
  31. Li A, Nozick L, Davidson R, Brown N, Jones D, Wolshon B (2013) Approximate solution procedure for dynamic traffic assignment. J Transp Eng 139(8):822–832.  https://doi.org/10.1061/(ASCE)TE.1943-5436.0000518 Google Scholar
  32. Lim GJ, Rungta M, Baharnemati MR (2015) Reliability analysis of evacuation routes under capacity uncertainty of road links. IIE Trans 47:50–63.  https://doi.org/10.1080/0740817X.2014.905736 Google Scholar
  33. Lindell MK (2008) EMBLEM2: an empirically based large scale evacuation time estimate model. Transp Res Part A 42:140–154.  https://doi.org/10.1016/j.tra.2007.06.014 Google Scholar
  34. Lindell MK, Prater CS (2007) A hurricane evacuation management decision support system (EMDSS). Nat Hazards 40:627–634.  https://doi.org/10.1007/s11069-006-9013-1 Google Scholar
  35. Liu Y, Chang GL, Liu Y, Lai X (2008) Corridor-based emergency evacuation system for Washington, D.C.: system development and case study. Transp Res Rec J Transp Res Board 2041:58–67.  https://doi.org/10.3141/2041-07 Google Scholar
  36. Lonfat M, Marks FD Jr, Chen SS (2004) Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: a global perspective. Mon Weather Rev 132(7):1645–1660.  https://doi.org/10.1175/1520-0493(2004)132%3c1645:PDITCU%3e2.0.CO;2 Google Scholar
  37. Luitel B, Villarini G, Vecchi GA (2018) Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones. J Hydrol 556:1026–1037.  https://doi.org/10.1016/j.jhydrol.2016.09.019 Google Scholar
  38. Marchok T, Rogers R, Tuleya R (2007) Validation schemes for tropical cyclone quantitative precipitation forecasts: evaluation of operational models for U.S. landfalling cases. Weather Forecast 22(4):726–746.  https://doi.org/10.1175/WAF1024.1 Google Scholar
  39. Matyas CJ (2017) Comparing the spatial patterns of rainfall and atmospheric moisture among tropical cyclones having a track similar to Hurricane Irene (2011). Atmosphere 8(9):165.  https://doi.org/10.3390/atmos8090165 Google Scholar
  40. Meng Q, Khoo HL (2008) Optimizing contraflow scheduling problem: model and algorithm. J Intell Transp Syst 12(3):126–138.  https://doi.org/10.1080/15472450802262349 Google Scholar
  41. Murray-Tuite P, Wolshon B (2013) Evacuation transportation modeling: an overview of research, development, and practice. Transp Res C 27:25–45.  https://doi.org/10.1016/j.trc.2012.11.005 Google Scholar
  42. National Hurricane Center (NHC) (2017) National Hurricane Center Forecast Verification. https://www.nhc.noaa.gov/verification/verify5.shtml. Updated April 4, 2017. Accessed 24 April 2018
  43. National Weather Service (NWS) (2012) Service Assessment Hurricane Irene, August 21-30, 2011. National Oceanic and Atmospheric Administration, National Weather Service, Silver SpringGoogle Scholar
  44. National Weather Service (NWS) (2017) Service Assessment October 2016 Hurricane Matthew. National Oceanic and Atmospheric Administration, National Weather Service, Silver SpringGoogle Scholar
  45. Ng MW, Waller ST (2010) Reliable evacuation planning via demand inflation and supply deflation. Transp Res Part E 46:1086–1094.  https://doi.org/10.1016/j.tre.2010.04.001 Google Scholar
  46. Ng MW, Park J, Waller ST (2010) A hybrid bilevel model for optimal shelter assignment in emergency evacuations. Comput Aided Civ Infrastruct Eng 25:547–556.  https://doi.org/10.1111/j.1467-8667.2010.00669.x Google Scholar
  47. Oldenborgh GJ, van der Wiel K, Sebastian A, Singh R, Arrighi J, Otto F, Haustein K, Li S, Vecchi G, Cullen H (2017) Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ Res Lett 12:124009.  https://doi.org/10.1088/1748-9326/aaa343 Google Scholar
  48. Pedrozo-Acuna A, Mejia-Estrada PI, Rodriguez-Rincon JP, Dominguez-Mora R, Gonzalez-Villareal FJ (2014) Flood risk from extreme events in Mexico. In: 11th International conference on hydroinformatics, HIC 2014, New York City, USGoogle Scholar
  49. Pedrozo-Acuna A, Rodriguez-Rincon JP, Arganis-Juarez M, Dominguez-Mora R, Gonzalez-Villareal FJ (2015) Estimation of probabilistic flood inundation maps for an extreme event: Panuco River, Mexico. J Flood Risk Manag 8(2):177–192.  https://doi.org/10.1111/jfr3.12067 Google Scholar
  50. Rappaport EN (2014) Fatalities in the United States from Atlantic Tropical Cyclones: new data and interpretation. Bull Am Meteorol Soc 95(3):341–346.  https://doi.org/10.1175/BAMS-D-12-00074.1 Google Scholar
  51. Regnier ED, MacKenzie CA (2018) Finalist—2017 M&SOM Practice-based research competition—The Hurricane Decision Simulator: A tool for marine forces in New Orleans to practice operations management in advance of a hurricane. Manuf Serv Oper Manag 1–18.  https://doi.org/10.1287/msom.2017.0694
  52. Rodriguez-Rincon JP, Brena-Naranjo JA, Pedrozo-Acuna A (2014) Uncertainty propagation in a hydro-meteorological approach: from the cloud to the flood map. In: 11th International conference on hydroinformatics, HIC 2014, New York City, USGoogle Scholar
  53. Rodriguez-Rincon JP, Pedrozo-Acuna A, Brena-Naranjo JA (2015) Propagation of hydro-meteorological uncertainty in a model cascade framework to inundation prediction. Hydrol Earth Syst Sci 19:2981–2998.  https://doi.org/10.5194/hess-19-2981-2015 Google Scholar
  54. Sayyady F, Eksioglu SD (2010) Optimizing the use of public transit system during no-notice evacuation of urban areas. Comput Ind Eng 59(4):488–495.  https://doi.org/10.1016/j.cie.2010.06.001 Google Scholar
  55. Sbayti H, Mahmassani HS (2006) Optimal scheduling of evacuation operations. Transp Res Rec J Transp Res Board 1964:238–246.  https://doi.org/10.3141/1964-26 Google Scholar
  56. Sebastian T, Lendering K, Kothuis B, Brand N, Jonkman B, van Gelder P, Godfroij M, Kolen B, Comes T, Lhermitte S (2017) Hurricane Harvey Report: a fact-finding effort in the direct aftermath of Hurricane Harvey in the Greater Houston Region. Delft University Publishers, DelftGoogle Scholar
  57. Sheffi Y, Mahmassani H, Powell WB (1982) A transportation network evacuation model. Transp Res A 16(3):209–218.  https://doi.org/10.1016/0191-2607(82)90022-X Google Scholar
  58. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2007) A description of the Advanced Research WRF Version 2. Boulder (CO): Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research; 2007 Jan. Report No.: NCAR Tech Notes-468+STRGoogle Scholar
  59. Stewart SR (2017) Hurricane Matthew (AL142016) 28 September–9 October 2016. National Hurricane Center Tropical Cyclone Report. https://www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf
  60. Tan Q, Huang GH, Wu C, Cai Y, Yan X (2009) Development of an inexact fuzzy robust programming model for integrated evacuation management under uncertainty. J Urban Plan Dev 135(1):39–49.  https://doi.org/10.1061/(ASCE)0733-9488(2009)135:1(39) Google Scholar
  61. Theodoulou G, Wolshon B (2004) Alternative methods to increase the effectiveness of freeway contraflow evacuation. Transp Res Rec J Transp Res Board 1865:48–56.  https://doi.org/10.3141/1865-08 Google Scholar
  62. Tufekci S, Kisko TM (1991) Regional evacuation modeling system (REMS): a decision support system for emergency area evacuations. Comput Ind Eng 21:89–93.  https://doi.org/10.1016/0360-8352(91)90069-I Google Scholar
  63. Tuydes H, Ziliaskopoulos A (2006) Tabu-based heuristic approach for optimization of network evacuation contraflow. Transp Res Rec J Transp Res Board 1964:157–168.  https://doi.org/10.3141/1964-17 Google Scholar
  64. Vergara H, Kirstetter P, Gourley JJ, Flamig ZL, Hong L, Arthur A, Kolar RL (2016) Estimating a priori kinematic wave model parameters based on regionalization for flash flood forecasting in the Conterminous United States. J Hydrol 541(Part A):421–433.  https://doi.org/10.1016/j.jhydrol.2016.06.011 Google Scholar
  65. Villarini G, Smith JA, Baeck ML, Marchok T, Vecchi GA (2011) Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J Geophys Res 116:D23116.  https://doi.org/10.1029/2011JD016175 Google Scholar
  66. Villarini G, Goska R, Smith JA, Vecchi GA (2014) North Atlantic tropical cyclones and U.S. flooding. Bull Am Meteorol Soc 95(9):1381–1388.  https://doi.org/10.1029/2011JD016175 Google Scholar
  67. Walsh KJE, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ, Holland G, Knutson TR, Kossin JP, Lee T, Sobel A, Sugi M (2016) Tropical cyclones and climate change. WIREs Clim Change 7:65–89.  https://doi.org/10.1002/wcc.371 Google Scholar
  68. Wang J, Hong Y, Li L, Gourley JJ, Khan SI, Yilmaz KK, Adler RF, Policelli FS, Habib S, Irwn D, Limaye AS, Korme T, Okello L (2011) The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol Sci J 56(1):84–98.  https://doi.org/10.1080/02626667.2010.543087 Google Scholar
  69. Wang L, Yang L, Gao Z, Li S, Zhou X (2016) Evacuation planning for disaster responses: a stochastic programming framework. Transp Res C 69:150–172.  https://doi.org/10.1016/j.trc.2016.05.022 Google Scholar
  70. Weaver JC, Feaster TD, Robbins JC (2016) Preliminary peak stage and streamflow data at selected stream-gaging stations in North Carolina and South Carolina for flooding following Hurricane Matthew, October 2016. U.S. Geological Survey Open-File Report 2016-1205Google Scholar
  71. Westerink J, Luettich R, Feyen J, Atkinson J, Dawson C, Roberts H, Powell M, Dunion J, Kubatko E, Pourtaheri H (2008) A basin- to channel-scale unstructured grid hurricane storm surge model applied to Southern Louisiana. Mon Weather Rev 136(3):833–864.  https://doi.org/10.1175/2007MWR1946.1 Google Scholar
  72. Wolshon B, Zhang Z, Parr S, Mitchell B, Pardue J (2015) Agent-based modeling for evacuation traffic analysis in megaregion road networks. Procedia Comput Sci 52:908–913.  https://doi.org/10.1016/j.procs.2015.05.164 Google Scholar
  73. Yang K, Davidson R, Nozick L, Blanton B, Colle B (2017) Scenario-based hazard trees for depicting resolution of hurricane uncertainty over time. Nat Hazards Rev 18(3):04017001-1.  https://doi.org/10.1061/(ASCE)NH.1527-6996.0000236 Google Scholar
  74. Yao T, Mandala SR, Chung BD (2009) Evacuation transportation planning under uncertainty: a robust optimization approach. Netw Spat Econ 9:171–189.  https://doi.org/10.1007/s11067-009-9103-1 Google Scholar
  75. Yazici MA, Ozbay K (2007) Impact of probabilistic road capacity constraints on the spatial distribution of hurricane evacuation shelter capacities. Transp Res Rec J Transp Res Board 2022:55–62.  https://doi.org/10.3141/2022-07 Google Scholar
  76. Yazici MA, Ozbay K (2010) Evacuation network modeling via dynamic traffic assignment with probabilistic demand and capacity constraints. Transp Res Rec J Transp Res Board 2196:11–20.  https://doi.org/10.3141/2196-02 Google Scholar
  77. Yi W, Nozick L, Davidson R, Blanton B, Colle B (2017) Optimization of the issuance of evacuation orders under evolving hurricane conditions. Transp Res B 95:285–304.  https://doi.org/10.1016/j.trb.2016.10.008 Google Scholar
  78. Yuan F, Han LD, Chin SM, Hwang H (2006) Proposed framework for simultaneous optimization of evacuation traffic destination and route assignment. Transp Res Rec J Transp Res Board 1964:50–58.  https://doi.org/10.3141/1964-07 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Kun Yang
    • 1
  • Rachel A. Davidson
    • 1
    Email author
  • Humberto Vergara
    • 2
  • Randall L. Kolar
    • 3
  • Kendra M. Dresback
    • 3
  • Brian A. Colle
    • 4
  • Brian Blanton
    • 5
  • Tricia Wachtendorf
    • 6
  • Jennifer Trivedi
    • 7
  • Linda K. Nozick
    • 8
  1. 1.Department of Civil and Environmental EngineeringUniversity of DelawareNewarkUSA
  2. 2.Cooperative Institute for Mesoscale Meteorological StudiesUniversity of OklahomaNormanUSA
  3. 3.School of Civil Engineering and Environmental ScienceUniversity of OklahomaNormanUSA
  4. 4.School of Marine and Atmospheric SciencesStony Brook University, State University of New YorkStony BrookUSA
  5. 5.Renaissance Computing InstituteUniversity of North Carolina at Chapel HillChapel HillUSA
  6. 6.Department of Sociology and Criminal JusticeUniversity of DelawareNewarkUSA
  7. 7.Disaster Research CenterUniversity of DelawareNewarkUSA
  8. 8.School of Civil and Environmental EngineeringCornell UniversityIthacaUSA

Personalised recommendations