Advertisement

Natural Hazards

, Volume 94, Issue 3, pp 1081–1098 | Cite as

Calculating snow-avalanche return period from tree-ring data

  • Flaviu Meseșan
  • Ionela G. Gavrilă
  • Olimpiu T. Pop
Original Paper

Abstract

The return period is a key element used for snow-avalanche characterization. To calculate the return period, historical data regarding past snow-avalanche activity are required. In mountain areas where past snow avalanches are poorly documented, dendrogeomorphic approaches constitute a reliable method for the reconstruction of past snow avalanches at the temporal scale of living trees. This paper presents an automated method for calculating the snow-avalanche return period using a digital elevation model and the location of the trees disturbed by every reconstructed snow-avalanche occurrence. Unlike the existing method, the method we propose requires neither the calculation of return period for every sampled tree nor the use of interpolation. This new method is based on the determination of spatial extent for every past snow-avalanche occurrence using the upslope area algorithm. The number of past snow-avalanche occurrences is calculated for every pixel of the path. The chronology length is divided by the number of past snow-avalanche occurrences to obtain the return period. In the present paper, both the proposed method and the existing method are applied to calculate the return period for three confined snow-avalanche paths located in Parâng Mountains, part of the Romanian Carpathians. Results are compared and discussed.

Keywords

Dendrogeomorphology Snow avalanche Return period GIS Parâng Mountains (Romanian Carpathians) 

Notes

Acknowledgements

This work represents a contribution to the Bilateral Project ZONAGEOTOUR «Zonage des aléas géomorphologiques dans les espaces touristiques des massifs du Parâng (Roumanie) et du Pirin (Bulgarie)» (Geomorphic hazard zonation in tourism areas of Parâng Mts., Romania and Pirin Mts., Bulgaria), funded by the Agence Universitaire de la Francophonie (AUF) and Fonds de Recherche Scientifique (FRS) de Bulgarie. The authors acknowledge the anonymous reviewer for the helpful and very positive comments on the manuscript.

References

  1. Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia 105:1–139Google Scholar
  2. Amoroso M, Maddison J, Clark MG, Nichols C, Toth N, Smith DJ (2009) An estimate of snow avalanche frequency at Apex Mountain, south-central British Columbia, Canada. In: First American dendrochronological conferenceGoogle Scholar
  3. Bollschweiler M, Stoffel M, Schneuwly DM, Bourqui K (2008) Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree Physiol 28(2):255–263CrossRefGoogle Scholar
  4. Boucher D, Filion L, Hétu B (2003) Reconstitution dendrochronologique et fréquence des grosses avalanches de neige dans un couloir subalpin du mont Hog’s Back, en Gaspésie centrale (Québec). Géog Phys Quatern 57(2–3):159–168Google Scholar
  5. Bud M (2008) Ecoturismul în grupa montană Parâng. Doctoral thesis, Faculty of Geography, University of Bucarest, BucarestGoogle Scholar
  6. Butler DR, Malanson GP (1985) A history of high-magnitude snow avalanches, southern Glacier National Park, Montana, USA. Mt Res Dev 5(2):175–182CrossRefGoogle Scholar
  7. Butler DR, Sawyer CF (2008) Dendrogeomorphology and high-magnitude snow avalanches: a review and case study. Nat Hazards Earth Syst Sci 8(2):303–309CrossRefGoogle Scholar
  8. Cappabianca F, Barbolini M, Natale L (2008) Snow avalanche risk assessment and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Reg Sci Technol 54(3):193–205CrossRefGoogle Scholar
  9. Carrara PE (1979) The determination of snow avalanche frequency through tree-ring analysis and historical records at Ophir, Colorado. Geol Soc Am Bull 90(8):773–780CrossRefGoogle Scholar
  10. Corona C, Rovéra G, Lopez Saez J, Stoffel M, Perfettini P (2010) Spatio-temporal reconstruction of snow avalanche activity using tree rings: pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. Catena 83(2):107–118Google Scholar
  11. Corona C, Lopez Saez J, Stoffel M, Bonnefoy M, Richard D, Astrade L, Berger F (2012) How much of the real avalanche activity can be captured with tree rings—an evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Reg Sci Technol 74:31–42CrossRefGoogle Scholar
  12. Decaulne A, Eggertsson Ó, Sæmundsson Þ (2012) A first dendrogeomorphologic approach of snow avalanche magnitude–frequency in Northern Iceland. Geomorphology 167:35–44CrossRefGoogle Scholar
  13. Decaulne A, Ólafur E, Sæmundsson Þ (2013) Summer growth tells winter tales: dendrogeomorphology applied to snow-avalanche research in Northern Iceland. Arbres and Dynamiques 30–48Google Scholar
  14. Decaulne A, Eggertsson Ó, Laute K, Beylich A (2014) A 100-year extreme snow-avalanche record based on tree-ring research in upper Bødalen, inner Nordfjord, western Norway. Geomorphology 218:3–15CrossRefGoogle Scholar
  15. Dubé S, Filion L, Hétu B (2004) Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Québec, Canada. Arct Antarct Alp Res 36(4):555–564CrossRefGoogle Scholar
  16. Freeman TG (1991) Calculating catchment area with divergent flow based on a regular grid. Comput Geosci 17(3):413–422CrossRefGoogle Scholar
  17. Fugaciu NR, Dinu I (2014) The development of the tourist area in the Parâng Mountains. Sibiu Alma Mater Univ J 7(2):69–79Google Scholar
  18. Germain D, Filion L, Hétu B (2005) Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Quebec, Canada. Can J Earth Sci 42(12):2103–2116CrossRefGoogle Scholar
  19. Germain D, Filion L, Hétu B (2009) Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Clim Change 92(1–2):141–167CrossRefGoogle Scholar
  20. Germain D, Hétu B, Filion L (2010) Tree-ring based reconstruction of past snow avalanche events and risk assessment in Northern Gaspé Peninsula (Québec, Canada). In: Stoffel M, Bollschweiler M, Butler DR, Luckman BH (eds) Tree rings and natural hazards. Springer, Amsterdam, pp 51–73CrossRefGoogle Scholar
  21. Johnston K, ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst. ESRI, RedlandsGoogle Scholar
  22. Jomelli V, Bertran P (2001) Wet snow avalanche deposits in the French Alps: structure and sedimentology. Geografiska Annaler Series A Physical Geography 83(1–2):15–28CrossRefGoogle Scholar
  23. Keylock CJ, Barbolini M (2001) Snow avalanche impact pressure-vulnerability relations for use in risk assessment. Can Geotech J 38(2):227–238CrossRefGoogle Scholar
  24. Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat Hazards 27(3):201–230CrossRefGoogle Scholar
  25. Luckman BH (2010) Dendrogeomorphology and snow avalanche research. In: Bollschweiler M, Butler DR, Luckman BH, Stoffel M (eds) Tree rings and natural hazards. Springer, Amsterdam, pp 27–34CrossRefGoogle Scholar
  26. McClung D, Schaerer P (2006) The Avalanche Handbook, 3rd edn. The Mountaineers Books, SeattleGoogle Scholar
  27. Mock CJ, Birkeland KW (2000) Snow avalanche climatology of the western United States mountain ranges. Bull Am Meteor Soc 81(10):2367–2392CrossRefGoogle Scholar
  28. Muntán E, Garcia C, Oller P, Martí G, Garcia A, Gutiérrez E (2009) Reconstructing snow avalanches in the Southeastern Pyrenees. Nat Hazards Earth Syst Sci 9(5):1599–1612CrossRefGoogle Scholar
  29. National Agency for Cadastre and Land Registration (2006) Romania orthoimagery. Retrieved 01 30, 2014, from ecwp://195.138.192.5/mosaics_5000/hunedoara.ecwGoogle Scholar
  30. Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21(2):69–78CrossRefGoogle Scholar
  31. Phipps RL (1985) Collecting, preparing, crossdating and measuring tree increment cores. US Department of the Interior, Geological Survey, pp 1–48Google Scholar
  32. Pop OT, Gavrilă IG, Roșian G, Meseșan F, Decaulne A, Holobâcă IH, Anghel T (2016) A century-long snow avalanche chronology reconstructed from tree-rings in Parâng Mountains (Southern Carpathians, Romania). Quatern Int 415:230–240CrossRefGoogle Scholar
  33. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, BerlinGoogle Scholar
  34. Reardon BA, Pederson GT, Caruso CJ, Fagre DB (2008) Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree rings in Glacier National Park, Montana, USA. Arct Antarct Alp Res 40(1):148–160CrossRefGoogle Scholar
  35. RINNTECH (2017) RINNTECH—technology for tree and wood analysis TSAP-WinTM. Retrieved 12 14, 2017, from http://www.rinntech.de: http://www.rinntech.de/content/view/17/48/lang,english/index.html
  36. Romania-Insider.com (2017) Deadly avalanches on Romania’s National Day. Retrieved from https://romania-insider.com: https://www.romania-insider.com/deadly-avalanches-romanias-national-day/
  37. Săndulache C, Săndulache I, Grecu F, Dobre R, Irimescu A (2015) Geomorphological processes within the alpine level of Parâng Mountains. Revista de Geomorfologie 17:29–44Google Scholar
  38. Shroder JF (1978) Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quatern Res 9(2):168–185CrossRefGoogle Scholar
  39. Stoffel M, Bollschweiler M (2009) What tree rings can tell about earth-surface processes: teaching the principles of dendrogeomorphology. Geogr Compass 3(3):1013–1037CrossRefGoogle Scholar
  40. Stoffel M, Corona C (2014) Dendroecological dating of geomorphic disturbance in trees. Tree-Ring Res 70(1):3–20CrossRefGoogle Scholar
  41. Stoffel M, Butler DR, Corona C (2013) Mass movements and tree rings: a guide to dendrogeomorphic field sampling and dating. Geomorphology 200:106–120CrossRefGoogle Scholar
  42. Van Groenigen JW, Siderius W, Stein A (1999) Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma 87(3):239–259CrossRefGoogle Scholar
  43. Voiculescu M, Onaca A (2014) Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi Mountains Romanian Carpathians. Cold Reg Sci Technol 104:63–75CrossRefGoogle Scholar
  44. Voiculescu M, Onaca A, Chiroiu P (2016) Dendrogeomorphic reconstruction of past snow avalanche events in Bâlea glacial valley–Făgăraş massif (Southern Carpathians), Romanian Carpathians. Quatern Int 415:286–302CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Flaviu Meseșan
    • 1
  • Ionela G. Gavrilă
    • 1
  • Olimpiu T. Pop
    • 1
  1. 1.Laboratory of Dendrochronology, Faculty of GeographyBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations