Advertisement

Natural Hazards

, Volume 94, Issue 1, pp 471–488 | Cite as

A historical geomorphological approach to flood hazard management along the shore of an alpine lake (northern Italy)

  • F. LuinoEmail author
  • A. Belloni
  • L. Turconi
  • F. Faccini
  • A. Mantovani
  • P. Fassi
  • F. Marincioni
  • G. Caldiroli
Original Paper
  • 184 Downloads

Abstract

A project to develop a flood hazard management plan along the east shore of Lago Maggiore was carried out. Several municipal territories along a coastal stretch have been analysed, identifying the rate of water rise and the limits of the submerged areas. This study discusses the overall methodological approach and presents the results for Porto Valtravaglia, as a significant case study. The first step was a detailed analysis of historical events to locate the most frequently damaged sites. Thousands of historical documents on past floods were collected, selected and validated, to map the most vulnerable sites. The second step was a morphological analysis of the studied coastal stretch. Multi-temporal aerial snap-shots were used and field surveys were conducted to verify the reliability of the historical data and to identify the critical hydraulic conditions along the shore. The third step was a review of the general urban development plans of the 17 studied municipalities. Aerophotogrammetric and cadastral maps were used to evidence and define the eight classes of land use destinations. In addition, the floodable areas were divided into three vulnerability and exposure categories considering different peculiarities of social and working life. Finally, using GIS spatial analysis tools, these data were compiled into risk maps and wielded as the municipal emergency plans’ baseline scenarios. For each studied municipality was hypothesised the alarm thresholds upon which were activated the flood emergency procedures.

Keywords

Lacustrine floods Historical geomorphology Emergency plans Lago Maggiore Northern Italy 

References

  1. Aragón-Durand F (2007) Urbanisation and flood vulnerability in the peri-urban interface of Mexico City. Disasters 31:477–494.  https://doi.org/10.1111/j.1467-7717.2007.01020.x CrossRefGoogle Scholar
  2. Aronica G, Bates PD, Horritt MS (2002) Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrol Process 16(10):2001–2016CrossRefGoogle Scholar
  3. Atwood G (1994) Geomorphology applied to flooding problems of closed-basin lakes… specifically Great Salt Lake, Utah. Geomorphology 10(1–4):197–219CrossRefGoogle Scholar
  4. Aureli F, Mignosa P, Ziveri C et al (2006) Fully-2D and quasi-2D modelling of flooding scenarios due to embankment failure, river flow. Taylor and Francis Group, London. ISBN 0-415-40815-6Google Scholar
  5. Baccarini A (1973) Relazione generale sulle piene dei fiumi dell’anno 1872. Camera dei DeputatiGoogle Scholar
  6. Bates PD, De Roo APJ (2000) A simple raster based model for flood inundation simulation. J Hydrol 236:54–77CrossRefGoogle Scholar
  7. Benito G, Lang M, Barriendos M et al (2004) Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods. Nat Hazards 31:623.  https://doi.org/10.1023/B:NHAZ.0000024895.48463.eb CrossRefGoogle Scholar
  8. Cancelli A, Nova R (1985) Landslides in soil debris cover triggered by rainstorms in Valtellina (Central Alps-Italy). In: Proceedings of 4th international conference and field workshop on landslides, Tokyo, pp 267–272Google Scholar
  9. Cantoni G (1869) Su le piogge dell’autunno 1868 nell’alta Italia. Rend. R. Ist. Lombardo di Scienze e Lettere, serie II 2(6–7):403–415Google Scholar
  10. Canuti P, Casagli N, Pellegrini M et al (2001) Geo-hydrological hazards. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the apennines and adjacent mediterranean basins, chapter 28. Kluwer Academic Publishers, Dordrecht, pp 513–532CrossRefGoogle Scholar
  11. Caroni E, Maraga F, Turitto O (1990) La delimitazione di aree soggette a rischio di inondazione: un approccio multidisciplinare. In: XXII Convegno di Idraulica e Costruzioni Idrauliche, Cosenza 4–7 ottobre 1990, 9–21Google Scholar
  12. Castellarin A, Domeneghetti A, Brath A (2011) Identifying robust large-scale flood risk mitigation strategies: a quasi-2d hydraulic model as a tool for the Po river. Phys Chem Earth 36(7–8):299–308CrossRefGoogle Scholar
  13. Ceriani M, Lauzi S, Padovan N (1992) Rainfall and landslides in the Alpine area of Lombardia Region, Central Alps, Italy. In: Interpraevent 1992, Bern, vol 2, 9–20Google Scholar
  14. Cummings CA, Todhunter PE, Rundquist BC (2012) Using the Hazus-MH flood model to evaluate community relocation as a flood mitigation response to terminal lake flooding: the case of Minnewaukan, North Dakota, USA. Appl Geogr 32(2):889–895CrossRefGoogle Scholar
  15. Cuya-Antonio O, Antonio H (2017) Effectiveness of the Barangay Disaster Risk Reduction and Management Committees (BDRRMCs) in flood-prone Barangays in Cabanatuan City, Philippines. Open Access Library J 4:1–16.  https://doi.org/10.4236/oalib.1103635 CrossRefGoogle Scholar
  16. De Marchi G (1950) Ripercussioni della regolazione del Lago Maggiore sulle piene del lago e su quelle del Ticino a Sesto Calende, Consorzio del Ticino, pubbl. 4, MilanoGoogle Scholar
  17. De Martino G, Fontana N, Giugni M (2000) Un modello bidimensionale per la delimitazione di aree inondabili. In: Atti XXVII Convegno di Idraulica e Costruzioni idrauliche, Genova, 12–15 Settembre 2000, vol. 3, pp 41–48Google Scholar
  18. Disse M, Engel H (2001) Nat Hazards 23:271.  https://doi.org/10.1023/A:1011142402374 CrossRefGoogle Scholar
  19. Dutto F (1994) Proposta metodologica per la definizione della fascia di pertinenza fluviale (FPF) lungo il tratto piemontese del Po”. Approccio geomorfologico. Atti del IV Convegno Internazionale di Geoingegneria su “Difesa e valorizzazione del suolo e degli acquiferi”, Torino 10–11 marzo 1994, Associazione Mineraria Subalpina, TorinoGoogle Scholar
  20. Faccini F, Luino F, Sacchini A et al (2015) Geohydrological hazards and urban development in the Mediterranean area: an example from Genoa (Liguria, Italy). Nat Hazards Earth Syst Sci 15:2631–2652.  https://doi.org/10.5194/nhess-15-2631-2015 CrossRefGoogle Scholar
  21. Faisal IM, Kabir MR, Nishat A (1999) Non-structural flood mitigation measures for Dhaka City. Urban Water 1:145–153CrossRefGoogle Scholar
  22. Ferrario MF, Bonadeo L, Brunamonte F et al (2015) Late Quaternary environmental evolution of the Como urban area (Northern Italy): a multidisciplinary tool for risk management and urban planning. Eng Geol 193:384–401CrossRefGoogle Scholar
  23. Frigerio I, Roverato S, De Amicis M (2013) A proposal for a geospatial database to support emergency management. J Geogr Inf Syst 5(4):396–403.  https://doi.org/10.4236/jgis.2013.54037 CrossRefGoogle Scholar
  24. Fu X, Tao T, Wang H, Hu T (2013) Risk assessment of lake flooding considering propagation of uncertainty from rainfall. J Hydrol Eng 18(8):1041–1047CrossRefGoogle Scholar
  25. Giacomelli A, Mancini M, Rosso R (1998) Integration of ERS-1 PRI imagery and digital terrain models for the assessment of flooded areas: the case of Alessandria (Italy), November 1994. La prevenzione delle catastrofi idrogeologiche: il contributo della ricerca scientifica (Luino Ed.), Atti Convegno Internazionale, Alba (CN), 5-7 Novembre 1996, vol II, 43–50Google Scholar
  26. Gilles D, Young N, Schroeder H, Piotrowski J, Chang Y (2012) Inundation mapping initiatives of the Iowa flood center: statewide coverage and detailed urban flooding analysis. Water 4(1):85–106.  https://doi.org/10.3390/w4010085 CrossRefGoogle Scholar
  27. Gilli A, Anselmetti FS, Glur L et al (2013) Lake sediments as archives of recurrence rates and intensities of past flood events. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau F (eds) Dating torrential processes on fans and cones. Advances in global change research, vol 47. Springer, Dordrecht, pp 225–242.  https://doi.org/10.1007/978-94-007-4336-6_15 Google Scholar
  28. Glas H, Jonckheere M, Mandal A et al (2017) A GIS-based tool for flood damage assessment and delineation of a methodology for future risk assessment: case study for Annotto Bay, Jamaica. Nat Hazards 88:1867–1891CrossRefGoogle Scholar
  29. Govi M, Turitto O (1994a) Ricerche bibliografiche per un catalogo sulle inondazioni, piene torrentizie frane in Valtellina e Valchiavenna. Associazione Mineraria Subalpina, Quaderni di Studi e di Documentazione, n. 16, 3 all. TorinoGoogle Scholar
  30. Govi M, Turitto O (1994b) Problemi di riconoscimento delle fasce di pertinenza fluviale. Atti del IV Convegno Internazionale di Geoingegneria “Difesa e valorizzazione del suolo e degli acquiferi”, Associazione Mineraria Subalpina, Torino 10–11 marzo 1994, pp 161–172Google Scholar
  31. Govi M, Gullà G, Nicoletti PG (2002) Val Pola rock avalanche of July 28, 1987, in Valtellina (Central Italian Alps). In: Evans SG, Degraff JV (eds) Catastrophic landslides.  https://doi.org/10.1130/REG15-p71 Google Scholar
  32. Grahn T, Nyberg R (2014) Damage assessment of lake floods: insured damage to private property during two lake floods in Sweden 2000/2001. IJDRR 10:305–314Google Scholar
  33. Gulbin S (2017) Impact of wetlands loss on the long-term flood risks of devils lake in a changing climate. The University of North Dakota, ProQuest Dissertations PublishingGoogle Scholar
  34. Hardmeyer K, Spencer MA (2007) Using risk-based analysis and geographic information systems to assess flooding problems in an urban watershed in Rhode island. Environ Manage 39:563–574CrossRefGoogle Scholar
  35. Horritt MS, Bates PD (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation. J Hydrol 268:87–99CrossRefGoogle Scholar
  36. ISPRA (2015) Dissesto idrogeologico in Italia: pericolosità e indicatori di rischio. Istituto Superiore per la Protezione e la Ricerca Ambientale, Rapporto 233/2015Google Scholar
  37. Kadetova AV, Radziminovich YB (2014) The catastrophic flood in Transbaikalia (Central Asia) in 1897: case study. Nat Hazards 72:423.  https://doi.org/10.1007/s11069-013-1019-x CrossRefGoogle Scholar
  38. Karmakar S, Simonovic SP, Peck A et al (2010) An information system for risk-vulnerability assessment to flood. J Geogr Inf Syst 2(3):129–146.  https://doi.org/10.4236/jgis.2010.23020 CrossRefGoogle Scholar
  39. Keith HD (2008) Disaster management and response: a lifelines study for the Queenstown Lakes District. Unpublished thesis, Master of Science in Hazard and Disaster Management, University of Canterbury (NZ)Google Scholar
  40. Krausmann E, Renni E, Campedel M et al (2011) Industrial accidents triggered by earthquakes, floods and lightning: lessons learned from a database analysis. Nat Hazards 59:285.  https://doi.org/10.1007/s11069-011-9754-3 CrossRefGoogle Scholar
  41. Kron W (2005) Flood risk = hazard·values·vulnerability. Water Int 30(1):58–68.  https://doi.org/10.1111/j.1753-318X.2008.01015.x CrossRefGoogle Scholar
  42. Kron W (2009) Flood insurance: from clients to global financial markets. J Flood Risk Manag 2(1):68–75CrossRefGoogle Scholar
  43. Leroi E (1996) Landslide hazard-risk maps at different scales: objectives, tools and development. In: Senneset K (ed), Landslides-Glissements de Terrain, 7th international symposium on landslides. Balkema, Trondheim, Norway, pp 35–51Google Scholar
  44. Luino F (2005) Sequence of instability processes triggered by heavy rainfall in the northern Italy. Geomorphology 66(1–4):13–39.  https://doi.org/10.1016/j.geomorph.2004.09.010 CrossRefGoogle Scholar
  45. Luino F (2016) Floods. In: Bobrowsky P, Marker B (eds) Encyclopedia of engineering geology. Encyclopedia of earth sciences series. Springer, Cham.  https://doi.org/10.1007/978-3-319-12127-7 Google Scholar
  46. Luino F, Belloni A, Padovan N in collaboration with Bassi M, Bossuto P and Fassi P (2002b) Historical and geomorphological analysis as a research tool for the identification of flood-prone zones and its role in the revision of town planning: the Oglio basin (Valcamonica—Northern Italy). In: 9th Congress of the international association for engineering geology and the environment. Durban, South Africa, 16–20 September 2002, pp 191–200Google Scholar
  47. Luino F, Turconi L (2017) Eventi di piena e frana in Italia settentrionale nel periodo 2005–2016. Ed. SMI, ISBN 978-88-903023-8-1Google Scholar
  48. Luino F, Tetamo G, Belloni A et al (1999) An application of historical analysis to define flooding risk in the Staffora basin (Lombardy-Northern Italy). Poster session, Annales Geophysicae of European Geophysical Society, XXIV General Assembly, The Hague (Holland), 19–23 April 1999Google Scholar
  49. Luino F, Bassi M, Fassi P et al (2002) L’importanza delle notizie pregresse quale supporto allo studio geomorfologico per l’individuazione delle aree potenzialmente inondabili ai fini urbanistici: il fondovalle del Torrente Pioverna (Lombardia). J AIGA-Ital As Appl Geol Environ 1:95–109Google Scholar
  50. Luino F, Fassi P, Lerbini M et al (2005) Individuazione delle zone potenzialmente inondabili della sponda lombarda del Lago Maggiore. Ricerca storica, studio geomorfologico ed analisi urbanistica ai fini della pianificazione di emergenza comunale e intercomunale. P.I.C. INTERREG IIIA Italia/Svizzera 2000–2006. Regione Lombardia, Protezione Civile, vol 4Google Scholar
  51. Luino F, Biddoccu M, Cirio CG et al (2009) Application of a model for the evaluation of flood damage. GeoInformatica 13(3):339–353CrossRefGoogle Scholar
  52. Luino F, Turconi L, Petrea C et al (2012) Uncorrected land-use planning highlighted by flooding: the Alba case study (Piedmont, Italy). Nat Hazards Earth Syst Sci 12:2329–2346.  https://doi.org/10.5194/nhess-12-2329-2012 CrossRefGoogle Scholar
  53. Luino F, Agangi A, Biddoccu M et al (2014) Project damage: Développement d’Actions pour le Marketing et la Gestion post-évènement. Book in three languages. 978-88-903023-7-4Google Scholar
  54. Luino F, Nigrelli G, Turconi L et al (2016) A proper land-use planning through the use of historical research. Disaster Adv 9(1):8–19Google Scholar
  55. Lumbroso D, Stone K, Vinet F (2011) An assessment of flood emergency plans in England and Wales, France and the Netherlands. Nat Hazards 58:341. http://eprints.hrwallingford.co.uk/607/1/HRPP555_An_assessment_of_flood_emergency_plans_in_England_and_Wales%2C_France_and_the_Netherlands.pdf CrossRefGoogle Scholar
  56. Okoye C, Ojeh V (2015) Mapping of flood prone areas in Surulere, Lagos, Nigeria: a GIS approach. J Geogr Inf Syst 7:158–176.  https://doi.org/10.4236/jgis.2015.72014 CrossRefGoogle Scholar
  57. Oliveri E, Noto L, Calabro P (1998) Metodologie semplificate per la delimitazione di aree a rischio di inondazione. Atti XXVII Convegno di Idraulica e Costruzioni idrauliche, Catania, 9–12 Settembre 1998, vol 3, pp 27–39Google Scholar
  58. Oya M (1971) Geomorphological land classification map of the Neyagawa River basin (Osaka and surrounding area), 1:25,000, indicating areas subject to will be flooding. Publ Nat Res Centre f. Disaster Prevention, Science and Technology Agency, 1971, TokyoGoogle Scholar
  59. Pappenberger F, Frodsham K, Beven K, Romanowicz R, Matgen P (2007) Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations, Hydrol Earth Syst Sci Discuss 3:2243–2277. https://www.hydrol-earth-syst-sci.net/11/739/2007/hess-11-739-2007.pdf
  60. Priest SJ, Clark MJ, Treby EJ (2005) Flood insurance: the challenge of the uninsured. Area 37:295–302.  https://doi.org/10.1111/j.1475-4762.2005.00633.x CrossRefGoogle Scholar
  61. Shankman D, Liang Q (2003) Landscape changes and increasing flood frequency in China’s Poyang lake region. Prof Geogr 55(4):434–445CrossRefGoogle Scholar
  62. Shankman D, Keim BD, Song J (2006) Flood frequency in China’s Poyang Lake region: trends and teleconnections. Int J Climatol 26:1255–1266.  https://doi.org/10.1002/joc.1307 CrossRefGoogle Scholar
  63. Sharma VK, Priya T (2001) Development strategies for flood prone areas, case study: Patna, India. Disaster Prev Manag 10(2):101–109CrossRefGoogle Scholar
  64. Sole A, D’Angelo L (1999) Urban areas flooding processes. In: Proceedings 3rd DHI software conference and courses. Helsingor, Denmark, June 7–11, 1999Google Scholar
  65. Stevens MR, Song Y, Berke PR (2010) New Urbanist developments in flood-prone areas: safe development, or safe development paradox? Nat Hazards 53:605–629.  https://doi.org/10.1007/s11069-009-450-8 CrossRefGoogle Scholar
  66. Surminski S, Aerts JCJH, Botzen WJW et al (2015) Reflections on the current debate on how to link flood insurance and disaster risk reduction in the European Union. Nat Hazards 79:1451. http://eprints.lse.ac.uk/61758/ CrossRefGoogle Scholar
  67. Tag-Eldeen M, Nilsson LY (1979) Planning processes in disaster prone areas with reference to floods in Tunisia. Disasters 3(1):89–94CrossRefGoogle Scholar
  68. Tropeano D, Luino F, Turconi L (2006) Eventi di piena e frana in Italia settentrionale nel periodo 2002-2004. Ed. SMS, TorinoGoogle Scholar
  69. Tucci CEM (2006) Urban flood management. In: WMO/ TD - No. 1372Google Scholar
  70. Vecchia AV (2008) Climate simulation and flood risk analysis for 2008–40 for Devils Lake, North Dakota. Scientific Investigations Report, Series number: 2008-5011, U.S. Geological Survey. https://pubs.er.usgs.gov/publication/sir20085011
  71. Waananen AO, Limerinos JT, Kockelman WJ et al (1977) Flood-prone areas and land-use planning: selected examples from San Francisco Bay Region, California. In: USGS, Professional paper no. 942. U.S. Government Printing OfficeGoogle Scholar
  72. Wang Y, Li Z, Tang Z, Zeng G (2011) A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resour Manage 25:3465.  https://doi.org/10.1007/s11269-011-9866-2 CrossRefGoogle Scholar
  73. Wang ZY, Lee JHW, Melching CS (2015) Dams and impounded rivers. In: River dynamics and integrated river management. Springer, Berlin.  https://doi.org/10.1007/978-3-642-25652-3_8 Google Scholar
  74. Wolman MG (1971) Evaluating alternative techniques of flood-plain mapping. Water Resour Res 7:1383–1392CrossRefGoogle Scholar
  75. Zheng H, Barta D, Zhang X (2014) Lesson learned from adaptation response to Devils Lake flooding in North Dakota, USA. Reg Environ Change 14(1):185–194.  https://doi.org/10.1007/s10113-013-0474-y CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018
corrected publication July 2018

Authors and Affiliations

  1. 1.Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica (CNR-IRPI)TurinItaly
  2. 2.Regione Lombardia, Direzione Generale, Sicurezza, Protezione Civile e ImmigrazioneMilanItaly
  3. 3.DISTAV – Universita′ di GenovaGenoaItaly
  4. 4.Regione Lombardia, Protezione Civile, Coordinamento Service Tecnico H24MilanItaly
  5. 5.Dipartimento di Scienze della Vita e dell’AmbienteUniversita’ Politecnica delle MarcheAnconaItaly

Personalised recommendations