Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador

  • Teresa Vera San Martín
  • Gary Rodriguez Rosado
  • Patricia Arreaga Vargas
  • Leonardo Gutierrez
Original Paper
  • 26 Downloads

Abstract

Ecuador has been prone to experience earthquakes and tsunamis linked to events in the subduction zone between the Nazca and the South American plates. The main objective of this investigation was to assess the population and buildings vulnerability by a possible worst-case Tsunami scenario in the highly touristic city of Salinas—Ecuador. The vulnerability of buildings was investigated by Fragility Functions (FFs) and Vulnerability Index, while the population vulnerability was assessed by FFs. The population of permanent residents (42,860 inhabitants) and tourists (highly variable, but reaching up to 40,163 tourists/day and 4790 tourists/night) were separately studied during nine public holydays/long weekends (i.e., when the population density reaches critical levels), and during daytime/nighttime. In the selected scenario (i.e., hypocenter: 100 km southwest of Salinas, ocean depth: 2 km, and 8.0 moment magnitude), the flood area covered 43% of Salinas county and 43–85% of urban parishes. The most populated areas were exposed to inundation. According to FFs analysis, between 16,380 and 45,410 people would be affected by a tsunamigenic wave during the day and between 7386 and 10,037 during the night of Christmas and Declaration of Independence holydays, respectively. Elderly, handicapped, underage, and tourist were the most vulnerable groups. A total of 2227 structures would be affected by tsunamigenic wave (FFs), representing 40% of exposed structures to the flood area (i.e., 2.03–6.63 m maximum flood depths). A total of 3160 buildings showed Vulnerability Indexes ranging from medium to high. Results from this study would assist in the identification of hazard areas, safe zones, shelter buildings, evacuation routes/times in this densely populated touristic city.

Keywords

Damage estimation Fragility Functions Population Tsunami Salinas city 

Notes

Acknowledgements

Dr. Koshimura, the staff of Building Research Institute, the Japanese International Cooperation Agency, and Dr. María del Pilar Cornejo are acknowledged for their advice and contribution to the current investigation.

References

  1. Adriano B, Mas E, Koshimura S, Estrada M, Jiménez C (2014) Scenarios of earthquake and tsunami damage probability in Callao Region, Peru using tsunami fragility functions. J Disaster Res 9:968–975CrossRefGoogle Scholar
  2. Arreaga P (2015) Tsunami inundation modelling and hazard mapping of the south coast of Ecuador. National Graduate Institute for Policy Studies (GRIPS)/ Building Research Institute (BRI), Tsukuba. http://iisee.kenken.go.jp/syndb/%3Faction=abstr%26id=MEE14622%26est=T%26year=2015. Accessed 16 Feb 2018
  3. Birkmann J (2006) Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions measuring vulnerability to natural hazards: towards disaster resilient societies 1:9–54Google Scholar
  4. Charvet I, Suppasri A, Imamura F (2014) Empirical fragility analysis of building damage caused by the 2011 Great East Japan tsunami in Ishinomaki city using ordinal regression, and influence of key geographical features. Stoch Environ Res Risk Assess 28:1853–1867.  https://doi.org/10.1007/s00477-014-0850-2 CrossRefGoogle Scholar
  5. Charvet I, Suppasri A, Kimura H, Sugawara D, Imamura F (2015) A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy. Nat Hazards 79:2073–2099.  https://doi.org/10.1007/s11069-015-1947-8 CrossRefGoogle Scholar
  6. Charvet I, Macabuag J, Rossetto T (2017) Estimating tsunami-induced building damage through fragility functions: critical review and research needs. Front Built Environ.  https://doi.org/10.3389/fbuil.2017.00036 Google Scholar
  7. Collot JY, Ribodetti A, Agudelo W, Sage F (2011) The South Ecuador subduction channel: evidence for a dynamic mega-shear zone from 2D fine-scale seismic reflection imaging and implications for material transfer. J Geophys Res Solid Earth.  https://doi.org/10.1029/2011jb008429 Google Scholar
  8. Contreras M (2013) Chronology of tsunamis in Ecuador from 1586 to 2012. Rev Téc 12:55–56Google Scholar
  9. Cruz M, Acosta M, Vasquez N (2005) Riesgos por Tsunami en la Costa ecuatoriana. Pan-American Institute of Geography and History. http://www.ipgh.gob.ec/documentos/recursos/RiesgosTsunamiCostaecuatoriana.pdf. Accessed 18 Feb 2018
  10. Dall’Osso F, Gonella M, Gabbianelli G, Withycombe G, Dominey-Howes D (2009) A revised (PTVA) model for assessing the vulnerability of buildings to tsunami damage. Nat Hazards Earth Syst Sci 9:1557–1565CrossRefGoogle Scholar
  11. Dall’Osso F, Maramai A, Graziani L, Brizuela B, Cavalletti A, Gonella M, Tinti S (2010) Applying and validating the PTVA-3 Model at the Aeolian Islands, Italy: assessment of the vulnerability of buildings to tsunamis. Nat Hazards Earth Syst Sci 10:1547–1562.  https://doi.org/10.5194/nhess-10-1547-2010 CrossRefGoogle Scholar
  12. Dall’Osso F, Dominey-Howes D, Tarbotton C, Summerhayes S, Withycombe G (2016) Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using “international expert judgment”: introducing the PTVA-4 model. Nat Hazards 83:1229–1256.  https://doi.org/10.1007/s11069-016-2387-9 CrossRefGoogle Scholar
  13. Delgado A, López J (2009) Creación de un Manual que Permita Medir la Presión en Centros Turísticos de Playa en el Ecuador: Caso Salinas&quot. GuayaquilGoogle Scholar
  14. Dominey-Howes D, Papathoma M (2006) Validating a tsunami vulnerability assessment model (the PTVA Model) using field data from the 2004. Indian Ocean Tsunami Nat Hazards 40:113–136.  https://doi.org/10.1007/s11069-006-0007-9 CrossRefGoogle Scholar
  15. Dominey-Howes D, Papathoma M (2007) Validating a tsunami vulnerability assessment model (the PTVA Model) using field data from the 2004. Indian Ocean Tsunami Nat Hazards 40:113–136.  https://doi.org/10.1007/s11069-006-0007-9 CrossRefGoogle Scholar
  16. Dominey-Howes D, Dunbar P, Varner J, Papathoma-Köhle M (2010) Estimating probable maximum loss from a Cascadia tsunami. Nat Hazards 53:43–61.  https://doi.org/10.1007/s11069-009-9409-9 CrossRefGoogle Scholar
  17. Espinoza J (1992) Terremotos tsunamigénicos en el Ecuador. Acta Oceanogr del Pac 7:21–28Google Scholar
  18. ESPOL (2010) Sistema de Información Geográfica de Amenazas y Usos de Suelos de Once Puntos Vulnerables de la Faja Costera del Ecuador. GuayaquilGoogle Scholar
  19. ESPOL (2017) Elaboración de un manual que permite determinar indicadores para la medición de la presión en centros turísticos de playa en el Ecuador: caso Salinas. EspolGoogle Scholar
  20. González-Riancho P et al (2014) Integrated tsunami vulnerability and risk assessment: Application to the coastal area of El Salvador. Nat Hazards Earth Syst Sci.  https://doi.org/10.5194/nhess-14-1223-2014 Google Scholar
  21. Harbitz CB, Løvholt F, Bungum H (2014) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72:1341–1374.  https://doi.org/10.1007/s11069-013-0681-3 CrossRefGoogle Scholar
  22. INAMHI (2014) Anuario Meteorologico. In: National Institute of Meteorology and Hydrology (ed), vol 1. Quito-Ecuador, p 149. http://www.serviciometeorologico.gob.ec/. Accessed 27 Feb 2018
  23. INEC (2010) CPV Interactivo para Investigadores y Académicos: Glosario de Términos Censales*. In: National Institute for Statistics and Census (Ed). p 15. http://www.catalog.ihsn.org/index.php/catalog/4403/download/57053. Accessed 3 Mar 2018
  24. INEC (2018) Statistics on population. National Institute for Statistics and Census. http://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/. Accessed 7 Mar 2018
  25. INOCAR (2016) Tabla II.-Predicción Diaria de Mareas en el Ecuador. Ecuadorian National Oceanographic Institute. http://www.inocar.mil.ec/mareas/TM/2016/LA_LIBERTAD.pdf. Accessed 3 Mar 2018
  26. IOC (2016) Tsunami glossary, 2016. UNESCO, ParisGoogle Scholar
  27. Ioualalen M, Monfret T, Béthoux N, Chlieh M, Ponce Adams G, Collot J-Y, Martillo C, Chunga K, Navarrete E (2014) Tsunami mapping in the Gulf of Guayaqui, Ecuador, due to local seismicity. Mar Geophys Res.  https://doi.org/10.1007/s11001-014-9225-9 Google Scholar
  28. Kaiser G, Scheele L, Kortenhaus A, Løvholt F, Römer H, Leschka S (2011) The influence of land cover roughness on the results of high resolution tsunami inundation modeling. Nat Hazards Earth Syst Sci 11:2521–2540.  https://doi.org/10.5194/nhess-11-2521-2011 CrossRefGoogle Scholar
  29. Kendrick E, Bevis M, Smalley R, Brooks B, Barriga R, Lauría E, Souto L (2003) The Nazca–South America Euler vector and its rate of change. J S Am Earth Sci 16:125–131CrossRefGoogle Scholar
  30. Koshimura S, Namegaya Y, Yanagisawa H (2009a) Fragility functions for tsunami damage estimation Doboku Gakkai Ronbunshuu B/JSCE. J Hydrau Coast Environ Eng 65:320–331Google Scholar
  31. Koshimura S, Oie T, Yanagisawa H, Imamura F (2009b) Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia. Coast Eng J 51:243–273CrossRefGoogle Scholar
  32. Latcharote P, Leelawat N, Suppasri A, Imamura F, Developing estimating equations of fatality ratio based on surveyed data of the 2011 (2017) Great east Japan tsunami. IOP Conf Ser Earth Environ Sci.  https://doi.org/10.1088/1755-1315/56/1/012011 Google Scholar
  33. Leelawat N, Suppasri A, Charvet I, Imamura F (2014) Building damage from the 2011 Great East Japan tsunami: quantitative assessment of influential factors. Nat Hazards 73:449–471.  https://doi.org/10.1007/s11069-014-1081-z CrossRefGoogle Scholar
  34. Leone F, Lavigne F, Paris R, Denain J-C, Vinet F (2011) A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr 31:363–375.  https://doi.org/10.1016/j.apgeog.2010.07.009 CrossRefGoogle Scholar
  35. Macabuag J et al (2016) A proposed methodology for deriving tsunami fragility functions for buildings using optimum intensity measures. Nat Hazards 84:1257–1285.  https://doi.org/10.1007/s11069-016-2485-8 CrossRefGoogle Scholar
  36. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  37. Omira R, Baptista MA, Miranda JM, Toto E, Catita C, Catalão J (2009) Tsunami vulnerability assessment of Casablanca-Morocco using numerical modelling and GIS tools. Nat Hazards 54:75–95.  https://doi.org/10.1007/s11069-009-9454-4 CrossRefGoogle Scholar
  38. Papathoma M, Dominey-Howes D (2003) Tsunami vulnerability assessment and its implications for coastal hazard analysis and disaster management planning, Gulf of Corinth, Greece. Nat Hazards Earth Syst Sci 3:733–747CrossRefGoogle Scholar
  39. Papathoma M, Dominey-Howes D, Zong Y, Smith D (2003) Assessing tsunami vulnerability, an example from Herakleio, Crete. Nat Hazards Earth Syst Sci 3:377–389CrossRefGoogle Scholar
  40. Papazachos BC, Scordilis EM, Panagiotopoulos DG, Papazachos CB, Karakaisis GF (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. Bull Geol Soc Greece 36:1482–1489Google Scholar
  41. Park S, van de Lindt JW, Cox D, Gupta R, Aguiniga F (2012) Successive earthquake-tsunami analysis to develop collapse fragilities. J Earthq Eng 16:851–863.  https://doi.org/10.1080/13632469.2012.685209 CrossRefGoogle Scholar
  42. Parwanto NB, Oyama T (2014) A statistical analysis and comparison of historical earthquake and tsunami disasters in Japan and Indonesia. Int J Disaster Risk Reduct 7:122–141.  https://doi.org/10.1016/j.ijdrr.2013.10.003 CrossRefGoogle Scholar
  43. Quizanga DM (2006) Curvas de fragilidad para las diferentes zonas sísmicas del Ecuador e influencia del refuerzo transversal. ESPE, SangolquiGoogle Scholar
  44. Reese S, Bradley B, Bind J, Greeme S, Power W, Sturman J (2011) Empirical building fragilities from observed damage in the 2009 South Pacific tsunami. Earth Sci Rev 107:156–173.  https://doi.org/10.1016/j.earscirev.2011.01.009 CrossRefGoogle Scholar
  45. Renteria W (2010) Diagnostico de la amenaza tsunamigénica de las costas ecuatorianas. Instituto Oceanográfico de la ArmadaGoogle Scholar
  46. Rygel L, O’sullivan D, Yarnal B (2006) A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country. Mitig Adapt Strateg Glob Change 11:741–764.  https://doi.org/10.1007/s11027-006-0265-6 CrossRefGoogle Scholar
  47. Saaty TL (1990) The analytic hierarchy process: planning, priority setting, resource allocation. RWS, 287 pGoogle Scholar
  48. Santos A, Tavares AO, Emidio A (2014) Comparative tsunami vulnerability assessment of an urban area: an analysis of Setúbal city. Port Appl Geogr 55:19–29.  https://doi.org/10.1016/j.apgeog.2014.08.009 CrossRefGoogle Scholar
  49. Shinozuka M, Feng M, Lee J, Naganuma T (2000) Statistical analysis of fragility curves. Eng Mech 126:1224–1231CrossRefGoogle Scholar
  50. SNI (2018) National information system. http://sni.gob.ec/inicio. Accessed 15 Feb 2018
  51. Suppasri A, Koshimura S, Imamura F (2009) Tsunami fragility curves and structural performance of building along the Thailand coast. In: 8th international workshop on remote sensing for disaster management, pp 3–8Google Scholar
  52. Suppasri A, Imamuray F, Koshimuraz S (2010) Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coast Eng J 52:107–132.  https://doi.org/10.1142/S0578563410002142 CrossRefGoogle Scholar
  53. Suppasri A, Imamura F, Koshimura S (2012a) Probabilistic tsunami hazard analysis and risk to coastal populations in Thailand. J Earthq Tsunami.  https://doi.org/10.1142/S179343111250011X Google Scholar
  54. Suppasri A, Imamura F, Koshimura S (2012b) Tsunami hazard and casualty estimation in a coastal area that neighbors the Indian Ocean and South China Sea. J Earthq Tsunami.  https://doi.org/10.1142/S1793431112500108 Google Scholar
  55. Suppasri A, Muhari A, Futami T, Imamura F, Shuto N (2014) Loss functions for small marine vessels based on survey data and numerical simulation of the 2011 Great East Japan tsunami. J Waterw Port Coast Ocean Eng.  https://doi.org/10.1061/(ASCE)WW.1943-5460.0000244 Google Scholar
  56. Suppasri A et al (2016) Improvement of tsunami countermeasures based on lessons from The 2011 Great East Japan Earthquake and Tsunami—situation after five years. Coast Eng J 58:1640011.  https://doi.org/10.1142/s0578563416400118 CrossRefGoogle Scholar
  57. Suppasri A, Fukui K, Yamashita K, Leelawat N, Ohira H, Imamura F (2018) Developing fragility functions for aquaculture rafts and eelgrass in the case of the 2011 Great East Japan tsunami. Nat Hazards Earth Syst Sci 18:145–155.  https://doi.org/10.5194/nhess-18-145-2018 CrossRefGoogle Scholar
  58. Tarbotton C, Dall’Osso F, Dominey-Howes D, Goff J (2015) The use of empirical vulnerability functions to assess the response of buildings to tsunami impact: comparative review and summary of best practice. Earth Sci Rev 142:120–134.  https://doi.org/10.1016/j.earscirev.2015.01.002 CrossRefGoogle Scholar
  59. Taubenböck H et al (2013) Risk reduction at the “Last-Mile”: an attempt to turn science into action by the example of Padang. Indones Nat Hazards 65:915–945.  https://doi.org/10.1007/s11069-012-0377-0 CrossRefGoogle Scholar
  60. Vanderveken A, Guha-Sapir D, Below R, Hoyois P, McClean D (2016) Tsunami disaster risk 2016: past impacts and projections. Centre for Research on the Epidemiology of Disasters, The United Nations Office For Disaster Risk reduction, Geneva, SwitzerlandGoogle Scholar
  61. Vera L (2014) Análisis de serie de tiempo del oleaje frente a Salinas-Ecuador y su relación con el potencial energéticoGoogle Scholar
  62. Vera T (2015) Tsunami Damage Estimation in Esmeraldas, Ecuador Using Tsunami Fragility Functions. GRIPS BRIGoogle Scholar
  63. Vera L, Lucero M, Mindiola M (2009) Caracterización Oceanográfica de la costa central ecuatorianaGoogle Scholar
  64. Wells D, Coppersmith K (1994) New empirical relationships among magnitude rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002Google Scholar
  65. Wiebe DM, Cox DT (2013) Application of fragility curves to estimate building damage and economic loss at a community scale: a case study of Seaside. Or Nat Hazards 71:2043–2061.  https://doi.org/10.1007/s11069-013-0995-1 CrossRefGoogle Scholar
  66. Wood NJ, Schmidtlein MC (2013) Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety. Nat Hazards 65:1603–1628.  https://doi.org/10.1007/s11069-012-0434-8 CrossRefGoogle Scholar
  67. Yanagisawa H, Koshimura S, Yagi Y, Fujii Y, Shoji G, Jiménez C (2011) The tsunami Vulnerability assessment in Peru using the Index of potential tsunami exposure. In: Tokyo, Japan, 2011, p 5Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad del Mar y Medio AmbienteUniversidad del PacíficoGuayaquilEcuador
  2. 2.Facultad de Ingeniería IndustrialUniversidad de GuayaquilGuayaquilEcuador
  3. 3.Instituto Oceanográfico de la ArmadaGuayaquilEcuador
  4. 4.Particle and Interfacial Technology Group, Department of Applied Analytical and Physical ChemistryGhent UniversityGhentBelgium
  5. 5.Facultad de IngenieríaUniversidad Católica Santiago de GuayaquilGuayaquilEcuador

Personalised recommendations