Natural Hazards

, Volume 92, Issue 3, pp 1547–1571 | Cite as

Potential damage and losses in a repeat of the 1910 Adra (Southern Spain) earthquake

  • S. Molina
  • M. Navarro
  • P. Martínez-Pagan
  • J. Pérez-Cuevas
  • F. Vidal
  • D. Navarro
  • N. Agea-Medina
Original Paper


The town of Adra (Almeria Province, South-Eastern Spain) has been seriously affected by historical damaging earthquakes in 1487, 1522, two in 1804 and in 1910 with epicentres offshore in the Alboran Sea that reached onshore an estimated maximum intensity of VIII, IX, VIII, VIII–IX and VII–VIII, respectively. Additionally, in the instrumental period, several seismic series near the city affected it with moderate structural damages like the recent one of 1993–1994, when two main earthquakes of magnitude 5.0 and 4.9 cause serious damage in mid-rise reinforced concrete buildings sited on soft soils. Consequently, the town can be affected by moderate to destructive earthquakes, so this paper provides an initial assessment of the potential impact and the consequences (in terms of structural damage, economic and human losses) if the 1910 Adra earthquake hit the city again. The results point out that buildings damage are mainly concentrated in the soft soils areas of the city and that the non-engineered buildings, especially the oldest one, have the highest vulnerability, and therefore, the structural damage is higher, while seismically designed structures show a better behaviour showing less damage. Additionally, mid- and high-rise buildings have more extensive damage than low-rise buildings. Besides, the reinforced concrete buildings with waffled-slab floors, built previously to the first Spanish seismic code (NCSE-94), show, also, important damage. In summary, we have obtained that 474 ± 160 and 973 ± 78 buildings will be affected by complete and extensive damage, respectively, that is around 40% of the buildings in the city.


Earthquake loss estimation Seismic microzonation Analytical methods Adra 1910 earthquake SELENA 



The authors wish to acknowledge the support of the Spanish research Projects CGL2011-30187-C02-02, BEST/2012/173, CGL2016-77688-R (AEI/FEDER,UE) and AICO/2016/098. We further acknowledge a wide range of helpful comments from two anonymous reviewers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst 35:415–456Google Scholar
  2. Barbat AH, Pujades LG, Lantada N (2008) Seismic damage evaluation in urban areas using the capacity spectrum method: application to Barcelona. Soil Dyn Earthq Eng 28(10–11):851–865. CrossRefGoogle Scholar
  3. CEN (European Committee for Standardization) (2002) Eurocode 8: design for structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings. Building Code, European Committee for Standardization, BrusselsGoogle Scholar
  4. Coburn A, Spence R (2002) Earthquake protection. Wiley, New YorkCrossRefGoogle Scholar
  5. Crowley H, Pinho R, Bommer JJ (2004) A probabilistic displacement-based vulnerability assessment procedure for earthquake loss estimation. Bull Earthq Eng 2(2):173–219. CrossRefGoogle Scholar
  6. Federal Emergency Management Agency (2003) HAZUS-MH: multi-hazard loss estimation methodology. Federal Emergency Management Agency, WashingtonGoogle Scholar
  7. Federal Emergency Management Agency (2005) Improvement of nonlinear static seismic analysis procedures, FEMA 440, Prepared by Applied Technology Council (ATC- 55 Project), WashingtonGoogle Scholar
  8. Galbis-Rodríguez J (1932) Catálogo sísmico de la zona comprendida entre los meridianos 5 E y 20 W y paralelos 45 N y 25 N. Instituto Geográfico y Catastral, MadridGoogle Scholar
  9. Gracia E, Pallas R, Soto JI, Comas M, Moreno X, Masana E, Santanach P, Diez S, Garcıa M, Dañobeitia J (2006) Active faulting offshore SE Spain (Alboran Sea). Implications for earthquake hazard assessment in the Southern Iberian Margin. Earth Planet Sci Lett 241:734–749CrossRefGoogle Scholar
  10. GZM-Gazeta de Madrid (1804) Del Viernes 27 de Enero de 1804, vol 8, pp 84–86Google Scholar
  11. Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc Am 43:17–34Google Scholar
  12. IGN-UPM Working Group (2013) Actualización de Mapas de Peligrosidad Sísmica de España 2012. Editorial Centro Nacional de Información Geográfica, MadridGoogle Scholar
  13. Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4:415–443. CrossRefGoogle Scholar
  14. Lang DH (2013) Earthquake damage and loss assessment–predicting the unpredictable. Ph.D. dissertation, University of BergenGoogle Scholar
  15. Martinez-Pagan P, Navarro M, Pérez-Cuevas J, Vidal F (2015) Application of SPAC and MASW Techniques to Earthquake-shaking Scenarios. The Case of the 1993–1994 Adra Earthquakes. In: Proccedings of the 21st European Meeting of Environmental and Engineering Geophysics—Near Surface Geosciences, Turin, ItalyGoogle Scholar
  16. Mezcua J, Rueda J, Garcia Blanco RM (2013) Iberian Peninsula historical seismicity revisited: an intensity data bank. Seismol Res Lett 84(1):9–18CrossRefGoogle Scholar
  17. Ministerio de Obras Públicas, Transporte y Medio Ambiente (1995) Real Decreto 2543/1994, de 29 de diciembre de 1994, por el que se aprueba la NCSE-94 Norma de Construcción Sismorresistente: parte General y de Edificación. Boletín Oficial del Estado, no 33: 3935–3980, EspañaGoogle Scholar
  18. Ministerio de Fomento. (2002) Real Decreto 997/2002, de 27 de septiembre de 2002, por el que se aprueba la NCSE-02 Norma de Construcción Sismorresistente: parte General y de Edificación. Boletín Oficial del Estado, no 244: 35898–35967, EspañaGoogle Scholar
  19. Molina S, Lang DH, Lindholm CD (2010) SELENA—an open-source tool for seismic risk and loss assessment using a logic tree computation procedure. Comput Geosci 36:257–269. CrossRefGoogle Scholar
  20. Morales J, Benito B, Luján M (2003) Expected ground motion in the south-east of Spain due to an earthquake in the epicentral area of the 1910 Adra earthquake. J Seismolog 7:175–192CrossRefGoogle Scholar
  21. Moreno-Gonzalez R, Bairán-García JM (2010) Curvas de fragilidad para evaluar el daño sísmico en edificios de concreto armado con losas reticulares. Revista de la Facultad de Ingeniería U.C.V 25(4):61–71Google Scholar
  22. Navarro M, Vidal F, Enomoto T, Alcalá FJ, García-Jerez A, Sánchez FJ, Abeki N (2007) Analysis of the weightiness of site effects on reinforced concrete (RC) building seismic behaviour: the Adra town example (SE Spain). Earthq Eng Struct Dyn 36(10):1363–1383CrossRefGoogle Scholar
  23. Navarro M, García-Jerez A, Alcalá FJ, Vidal F, Enomoto T (2014) Local site effect microzonation of Lorca town (SE Spain). Bull Earthq Eng 12:1933–1959. CrossRefGoogle Scholar
  24. Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V, Henshaw P, Butler L, Nastasi M, Panzeri L, Simionato M, Vigano D (2014) OpenQuake engine: an open hazard (and risk) software for the global earthquake model. Seismol Res Lett. Google Scholar
  25. Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64:800–808CrossRefGoogle Scholar
  26. Pitilakis K, Franchin P, Khazai B, Wenzel H (eds) (2014) SYNER-G: systemic seismic vulnerability and risk assessment of complex urban, utility, lifeline systems and critical facilities. Springer, BerlinGoogle Scholar
  27. Posadas A, Vidal F, Navarro M (2006) The M = 6.3 Earthquake of January 13 (1804) in Motril (Spain). In: Proceedings of the first Europen conference on earthquake engineering and seismology, paper number 91:1–8Google Scholar
  28. Reicherter K, Becker-Heidmann B (2009) Tsunami deposits in the western Mediterranean; remains of the 1522 Almeria earthquake. In: Reicherter K , Michetti M, Silva PG (eds) Paleoseismology; historical and prehistorical records of earthquake ground effects for seismic hazard assessment. J Geol Soc Spec Pub 316:217–235Google Scholar
  29. Reicherter K, Hübscher C (2007) Evidence for a seafloor rupture of the Carboneras Fault Zone (southern Spain): relation to the 1522 Almerıa earthquake. J Seismol 11:15–26CrossRefGoogle Scholar
  30. Sanchez Navarro-Neumann M (1911) Enumeración de los terremotos sentidos en España durante el año 1910. Boletín de la Real Sociedad Española de Historia Natural, pp 459–470Google Scholar
  31. Stich D, Ammon CJ, Morales J (2003) Moment tensor solutions for small and moderate earthquakes in the Ibero-Maghreb region. J Geophys Res. Google Scholar
  32. Tapia Garrido JÁ (1986) Historia General de Almería y su Provincia, tomos III-IV-VII. In: Biblioteca de Autores y Temas Almerienses, Serie Historia de Almería. Ed. Cajal, Monte de Piedad y Caja de Ahorros de AlmeríaGoogle Scholar
  33. Vargas YF, Pujades LG, Barbat AH, Hurtado JE (2013) Evaluación probabilista de la capacidad, fragilidad y daño sísmico de edificios de hormigón armado. Revista Internacional de Mètodos Numèricos para Cálculo y Diseño en Ingeniería 29(2):63–78CrossRefGoogle Scholar
  34. Vidal F (1986) Sismotectonica de la region Beticas- Mar de Alboran. Ph.D. Dissertation, University of GranadaGoogle Scholar
  35. Vidal F (1993) Terremotos relevantes y su impacto en Andalucía. Universidad de Granada—Instituto Andaluz de Geofísica, GranadaGoogle Scholar
  36. Vidal F, Romacho MD, Feriche M, Navarro M, Abeki N (1996) Seismic microzonation in Adra and Berja Towns, Almeria (Spain). In: Proceedings of the 11th World conference on earthquake engineering, Acapulco, MexicoGoogle Scholar
  37. Vidal F, Espinar M, Navarro M, Vidal L (2008) Reappraisal of four Betics earthquakes of the XVI century. In: Proceeding of the 31st General Assembly of the European Seismological Commission, Hersonissos, Crete, GreeceGoogle Scholar
  38. Vidal F, Espinar M, Aranda C, Navarro M (2012) The 1487 earthquake in the city of Almeria. In: Proceedings of the 7th Asamblea Hispano-Portuguesa de Geodesia y GeofisicaGoogle Scholar
  39. Vielma JC, Barbat AH, Oller S (2009) Seismic safety of low ductility structures used in Spain. Bull Earthq Eng 8(1):135–155CrossRefGoogle Scholar
  40. Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationship between peak ground acceleration, peak ground velocity, and Modified Mercalli Intensity for earthquakes in California. Earthq Spectra 15:557–564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento Ciencias de la Tierra y del Medio Ambiente, Facultad de CienciasUniversidad de AlicanteAlicanteSpain
  2. 2.Departamento Química y FísicaUniversidad de AlmeríaAlmeríaSpain
  3. 3.Instituto Andaluz de GeofísicaUniversidad de GranadaGranadaSpain
  4. 4.Departamento Ingenieria Minera, Geológica y CartográficaUniversidad Politécnica de CartagenaCartagenaSpain
  5. 5.Ciencias de la Ingeniería, Pontificia Universidad Católica Madre y Maestra Santo DomingoSanto DomingoDominican Republic
  6. 6.Departamento Geografía Física y Análisis Geográfico RegionalUniversidad de SevillaSevillaSpain
  7. 7.Instituto Multidisciplinar para el Estudio del Medio “Ramón MargalefUniversidad de AlicanteAlicanteSpain

Personalised recommendations