Advertisement

Natural Hazards

, Volume 92, Issue 2, pp 857–884 | Cite as

Spatial–temporal patterns of cloud-to-ground lightning over the northwest Iberian Peninsula during the period 2010–2015

  • Dominic Royé
  • Nieves Lorenzo
  • Javier Martin-Vide
Original Paper

Abstract

The spatial–temporal patterns of cloud-to-ground (CG) lightning covering the period 2010–2015 over the northwest Iberian Peninsula were investigated. The analysis conducted employed three main methods: the circulation weather types developed by Jenkinson and Collison, the fit of a generalized additive model (GAM) for geographic variables, and the use of a concentration index for the ratio of lightning strikes and thunderstorm days. The main activity in the summer months can be attributed to situations with eastern or anticyclonic flow due to convection by insolation. In winter, lightning proves to have a frontal origin and is mainly associated with western or cyclonic flow situations which occur with advections of air masses of maritime origin. The largest number of CG discharges occurs under eastern flow and their hybrids with anticyclonic situations. Thunderstorms with greater CG lightning activity, highlighted by a higher concentration index, are located in areas with a higher density of lightning strikes, above all in mountainous areas away from the sea. The modeling of lightning density with geographic variables shows the positive influence of altitude and, particularly, distance to the sea, with nonlinear relationships due to the complex orography of the region. Likewise, areas with convex topography receive more lightning strikes than concave ones, a relation which has been demonstrated for the first time from a GAM.

Keywords

Thunderstorm Iberian Peninsula Concentration index Circulation weather types Convexity index Generalized additive model Cloud-to-ground lightning 

References

  1. Albrecht R, Goodman S, Buechler D, Blakeslee R, Christian H (2016) Where are the lightning hotspots on earth? BAMS 97:2051–2068CrossRefGoogle Scholar
  2. Anderson G, Klugmann D (2014) A European lightning density analysis using 5 years of ATDnet data. Nat Hazards Earth Syst Sci 14:815–829CrossRefGoogle Scholar
  3. Areitio J, Ezcurra A, Herrero I (2001) Cloud to ground lightning characteristics in the Spanish Basque Country area during the period 1992–1996. J Atmos Sol-Terr Phys 63:1005–1015CrossRefGoogle Scholar
  4. Ashley WS, Gilson CW (2009) A reassessment of US lightning mortality. BAMS 90:1502–1518CrossRefGoogle Scholar
  5. Ben Ami Y, Altaratz O, Yair Y, Koren I (2015) Lightning characteristics over the eastern coast of the Mediterranean during different synoptic systems. Nat Hazards Earth Syst Sci 15(11):2449–2459CrossRefGoogle Scholar
  6. Beringer J, Tapper N (2002) Surface energy exchanges and interactions with thunderstorms during the Maritime Continent Thunderstorm Experiment (MCTEX). J Geophys Res 107:AAC 3–1–AAC 3–13Google Scholar
  7. Brooks H (2013) Severe thunderstorms and climate change. Atmos Res 123:129–138CrossRefGoogle Scholar
  8. Brooks HE, Dotzek N (2008) Climate extremes and society, Cambridge Press, chap The spatial distribution of severe convective storms and an analysis of their secular changesGoogle Scholar
  9. Campbell RJ (2012) Weather-related power outages and electric system resiliency. Congressional Research Service 7-5700 www.crs.gov R42696:1–18
  10. Christian H, Blakeslee R, Boccippio D, Boeck W, Buechler D, Driscoll K, Goodman S, Hall J, Koshak W, Mach D, Stewart M (2003) Global frequency and distribution of lightning as observed from space by the Optical transient detector. J Geophys Res 107:4005CrossRefGoogle Scholar
  11. Cummins KL (2012) On the relationship between terrain variations and LLS derived lightning parameters. In: International conference on lightning protection (ICLP), Vienna, Austria, Vienna, Austria, p 6Google Scholar
  12. De Conti A, Silveira F, Visacro S (2015) Lightning strikes to tall objects: a study of wave interactions at the return-stroke front using a nonlinear transmission line model. J Geophys Res Atmos 120:6331–6345CrossRefGoogle Scholar
  13. Dwyer JR, Uman MA (2014) The physics of lightning. Phys Rep 534:147–241CrossRefGoogle Scholar
  14. Farnell C, Rigo T, Pineda N (2017) Lightning jump as a nowcast predictor: application to severe weather events in Catalonia. Atmos Res 183:130–141CrossRefGoogle Scholar
  15. Galanaki E, Flaounas E, Kotroni V, Lagouvardos K, Argiriou A (2016) Lightning activity in the Mediterranean: quantification of cyclones contribution and relation to their intensity. Atmos Sci Lett 17(9):510–516CrossRefGoogle Scholar
  16. Gômez-Gesteira M, Gimeno L, De Castro M, Lorenzo MN, Alvarez I, Nieto R, Taboada JJ, Crespo AJC, Ramos AM, Iglesias I, Gômez Gesteira JL, Santo FE, Barriopedro D, Trigo IF (2011) The state of climate in NW Iberia. Clim Res 48:109–144CrossRefGoogle Scholar
  17. Gungle B, Krider EP (2006) Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms. J Geophys Res 111(D19):203CrossRefGoogle Scholar
  18. Hastie T, Tibshirani R (1990) A generalized additive models, Monographs on Statistics and Applied Probability, vol 43. Chapman & Hall/CRCGoogle Scholar
  19. Hill RD, Rinker RG, Dale WH (1979) Atmospheric nitrogen fixation by lightning. J Atmos Sci 37:179–192CrossRefGoogle Scholar
  20. Holle RL, Howard KW, Vavrek RJ, Allsopp J (1995) Safety in the presence of lightning. Semin Neurol 15:375–380CrossRefGoogle Scholar
  21. Huth R, Beck C, Philipp A, Demuzere M, Ustrnul Z, Cahynová M, Kyselý J, Tveito OE (2008) Classifications of atmospheric circulation patterns: recent advances and applications. Ann N Y Acad Sci 1147:105–152CrossRefGoogle Scholar
  22. Huth R, Beck C, Kučerová M (2016) Synoptic-climatological evaluation of the classifications of atmospheric circulation patterns over Europe. Int J Climatol 36:2710–2726CrossRefGoogle Scholar
  23. Jenkinson AF, Collison FP (1977) An initial climatology of gales over the North sea. Synoptic Climatology Branch Memorandum 62: Meteorological Office (London)Google Scholar
  24. Jolliffe IT, Hope PB (1996) Bounded bivariate distributions with nearly normal marginal. Am Stat 50:17–20.  https://doi.org/10.2307/2685038 Google Scholar
  25. Jones PD, Hulme M, Briffa KR (1993) A comparison of Lamb circulation types with an objective calssigication scheme. Int J Climatol 13:655–663CrossRefGoogle Scholar
  26. Kilinc M, Beringer J (2007) The spatial and temporal distribution of lightning strikes and their relationship with vegetation type, elevation, and fire scars in the Northern territory. J Clim 20:1161–1173CrossRefGoogle Scholar
  27. Koethe R, Lehmeier F (1996) SARA - System zur automatischen Relief-analyse. User manual, 2nd edn. [Dept. of Geography, University of Goettingen, unpublished] Google Scholar
  28. Kornei K (2018) Australian state forecasts deadly thunderstorm asthma. Science 359(6374):380.  https://doi.org/10.1126/science.359.6374.380 CrossRefGoogle Scholar
  29. Kotroni V, Lagouvardos K (2008) Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean. J Geophys Res 113Google Scholar
  30. Liu W, Wang S, Zhou Y, Wang L, Zhu J, Wang F (2016) Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn mountains of China. Nat Hazards 81:347–363CrossRefGoogle Scholar
  31. Lorenzo MN, Taboada JJ, Gimeno L (2008) Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). Int J Climatol 28:1493–1505CrossRefGoogle Scholar
  32. López RE, Holle RL (1986) Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon Weather Rev 114:1288–1312CrossRefGoogle Scholar
  33. Martin-Vide J (2004) Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int J Climatol 24:959–971.  https://doi.org/10.1002/joc.1030 CrossRefGoogle Scholar
  34. Martín-Vide J, Moreno García MC (2012) La díficil determinación de la evolución del número de días de tormenta en España. el caso de Barcelona. Polígonos Revista de Geografía 24:77–94Google Scholar
  35. Michaelides S, Savvidou K, Nicolaides K (2010) Relationships between lightning and rainfall intensities during rainy events in Cyprus. Adv Geosci 23:87–92CrossRefGoogle Scholar
  36. Mills B, Unrau D, Pentelow L, Spring K (2010) Assessment of lightning-related damage and disruption in Canada. Nat Hazards 52:481–499CrossRefGoogle Scholar
  37. Mora García M, Martín JR, Soriano LR, Dávila FP (2015) Observed impact of land uses and soil types on cloud-to-ground lightning in Castilla-Leon (Spain). Atmos Res 166Google Scholar
  38. Naranjo L, Prez Muñuzuri V (eds) (2006) A variabilidade natural do clima en Galicia. Xunta de Galicia-Consellería de Medio Ambiente e Desenvolvemento SostibleGoogle Scholar
  39. Olascoaga MJ (1950) Some aspects of Argentine rainfall. Tellus B 2:312–318Google Scholar
  40. Pal J, Chaudhuri S, Chowdhury AR, Bandyopadhyay T (2016) Cloud - aerosol interaction during lightning activity over land and ocean: precipitation pattern assessment. Asia-Pac J Atmos Sci 52(3):251–261CrossRefGoogle Scholar
  41. Philipp A (2009) Comparison of principal component and cluster analysis for classifying circulation pattern sequences for the European domain. Theor Appl Climatol 96:31–41CrossRefGoogle Scholar
  42. Philipp A, Bartholy J, Beck C, Erpicum M, Esteban P, Fettweis X, Huth R, James P, Jourdain S, Kreienkamp F, Krennert T, Lykoudis S, Michalides SC, Pianko-Kluczynska K, Post P, Alvarez DR, Schiemann R, Spekat A, Tymvios F (2010) Cost733cat—a database of weather and circulation type classifications. Phys Chem Earth (Special Issue) 35:360–373CrossRefGoogle Scholar
  43. Pineda N, Montanya J (2009) Lightning: principles, instruments and applications review of modern lightning research, Springer, chap Lightning detection in Spain: the particular case of Catalonia, pp 161–185Google Scholar
  44. Pineda N, Rigo T, Bech J, Soler X (2007) Lightning and precipitation relationship in summer thunderstorms: case studies in the North Western Mediterranean region. Atmos Res 85:159–170CrossRefGoogle Scholar
  45. Pineda N, Esteban P, Trapero L, Soler X, Beck C (2010) Circulation types related to lightning activity over Catalonia and the Principality of Andorra. Phys Chem Earth 35:469–476CrossRefGoogle Scholar
  46. Pineda N, Montanyà J, Van der Velde OA (2014) Characteristics of lightning related to wildfire ignitions in Catalonia. Atmos Res 135(136):380–387CrossRefGoogle Scholar
  47. Poelman DR (2014) A 10-year study on the characteristics of thunderstorms in Belgium based on cloud-to-ground lightning data. Mon Weather Rev 142:4839–4849CrossRefGoogle Scholar
  48. Price C (2009) Lightning: principles, instruments and applications review of modern lightning research, Springer, chap Thunderstorms, lightning and climate changeGoogle Scholar
  49. Rakov VA, Uman MA (2007) Lightning: physics and effects. Cambridge University Press, CambridgeGoogle Scholar
  50. Ramos AB, Ramos R, Sousa P, Trigo RM, Janeira M, Prior V (2011) Cloud to ground lightning activity over Portugal and its association with circulation weather types. Atmos Res 101:84–101CrossRefGoogle Scholar
  51. Ramos AM, Barriopedro D, Dutra E (2015) Circulation weather types as a tool in atmospheric, climate, and environmental research. Front Environ Sci 3Google Scholar
  52. Reap RM (1986) Evaluation of cloud-to-ground lightning data from the western United States for the 1983–1984 summer seasons. J Appl Meteorol Climatol 25:785–799CrossRefGoogle Scholar
  53. Riehl H (1949) Some aspects of Hawaiian rainfall. BAMS 30:76–187Google Scholar
  54. Rivas-Soriano L, De Pablo F, Tomas CJ (2005) Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula. Atmos Sol-Terr Phys 67:1632–1639CrossRefGoogle Scholar
  55. Rivas-Soriano LJ, De Pablo F, Diez EG (2001) Meteorological and geo-orographical relationships with lightning activity in Castilla-Leon (Spain). Meteorol Appl 8:169–175CrossRefGoogle Scholar
  56. Rodríguez Guitián MA, Ramil-Rego P (2007) Clasificaciones climáticas aplicadas a Galicia: revisión desde una perspectiva biogeográfica. Recursos Rurais 1:31–53Google Scholar
  57. Romps DM, Seeley JT, Vollaro D, Molinari J (2014) Projected increase in lightning strikes in the United States due to global warming. Science 346:851–854CrossRefGoogle Scholar
  58. Rorig ML, Mckay SJ, Ferguson SA, Werth P (2007) Model-generated predictions of dry thunderstorm potential. J Appl Meteorol Climatol 46:605–614CrossRefGoogle Scholar
  59. Rosenfeld D, Lohmann U, Raga GB, O’Dowd C, Kulmala M, Fuzzi S, Reissell A, Andreae M (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313CrossRefGoogle Scholar
  60. Santos JA, Reis MA, Sousa J, Leite SM, Correia S, Janeira M, Fragoso M (2012) Cloud-to-ground lightning in Portugal: patterns and dynamical forcing. Nat Hazards Earth Syst Sci 12:639–649CrossRefGoogle Scholar
  61. Schneider P, Roberts D, Kyriakidis P (2008) A vari-based relative greenness from modis data for computing the fire potential index. Remote Sens Environ 112:1151–1167CrossRefGoogle Scholar
  62. Seity Y, Soula S, Sauvageot H (2001) Lightning and precipitation relationship in coastal thunderstorms. J Geophys Res 106:22801–22816CrossRefGoogle Scholar
  63. Sáez de Cámara E, Gangoiti G, Alonso L, Iza J (2015) Daily precipitation in northern iberia: Understanding the recent changes after the circulation variability in the north atlantic sector. J Geophys Res Atmos 120(19):9981–10005CrossRefGoogle Scholar
  64. Shalev S, Saaroni H, Izsak T, Yair Y, Ziv B (2011) The spatio-temporal distribution of lightning over Israel and the neighboring area and its relation to regional synoptic systems. Nat Hazards Earth Syst Sci 11:2125–2135CrossRefGoogle Scholar
  65. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, LondonCrossRefGoogle Scholar
  66. Soula S (2009) Lightning: principles, instruments and applications review of modern lightning research. Springer, chap Lightning and precipitation, pp 447–463Google Scholar
  67. Sousa JF, Fragoso M, Mendes S, Corte-Real J, Santos JA (2013) Statistical-dynamical modeling of the cloud-to-ground lightning activity in Portugal. Atmos Res 132–133:46–64CrossRefGoogle Scholar
  68. Tomas C, De Pablo F, Rivas-Soriano L (2004) Circulation weather types and cloud-to-ground flash density over the Iberian Peninsula. Int J Climatol 24:109–123CrossRefGoogle Scholar
  69. Trigo R, Da Camara C (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20:1559–1581CrossRefGoogle Scholar
  70. Tsenova B, Barakova D, Mitzeva R (2017) Numerical study on the effect of charge separation at low cloud temperature and effective water content on thunderstorm electrification. Atmos Res 184:1–14CrossRefGoogle Scholar
  71. Van Delden A (2001) The synoptic setting of thunderstorms in western Europe. Atmos Res 56:89–110CrossRefGoogle Scholar
  72. Vogt BJ, Hodanish SJ (2016) A geographical analysis of warm season lightning/landscape interactions across Colorado, USA. Appl Geogr 75:93–103CrossRefGoogle Scholar
  73. Wapler K, James P (2015) Thunderstorm occurrence and characteristics in central europe under different synoptic conditions. Atmos Res 158–159:231–244CrossRefGoogle Scholar
  74. Williams E, Stanfill S (2002) Origine physique du contraste entre activité électrique au dessus des terres et des océans. CR Phys 3:1277–1292CrossRefGoogle Scholar
  75. Williams E, Mushtak V, Rosenfeld D, Goodman S, Boccippio D (2005) Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos Res 76:288–306CrossRefGoogle Scholar
  76. Wood S (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, LondonGoogle Scholar
  77. Wood S (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73:3–36CrossRefGoogle Scholar
  78. Yair Y, Aviv R, Ravid G, Yaniv R, Ziv B (2006) Evidence for synchronicity of lightning activity in networks of spatially remote thunderstorms. J Atmos Solar Terr Phys 68:1401–1415CrossRefGoogle Scholar
  79. Yuan T, Remer LA, Pickering KE, Yu H (2011) Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett 38(L04):701Google Scholar
  80. Zipser EJ, Lutz KR (1994) The vertical profile of radar reflectivityof convective cells: a strong indicator of storm intensity and lightningprobability. Mon Weather Rev 122:1751–1759CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeographyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of GeographyUniversity of PortoPortoPortugal
  3. 3.Department of Applied PhysicsUniversity of VigoVigoSpain
  4. 4.Department of GeographyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations