Natural Hazards

, Volume 89, Issue 3, pp 1307–1325 | Cite as

Flood risk assessment in a coastal lagoon under present and future scenarios: Ria de Aveiro case study

  • Carina L. Lopes
  • Fátima L. Alves
  • João M. Dias
Original Paper


Floods are one of the major threats to low-lying coastal lagoons, affecting people, socio-economic activities and ecosystem services. This work proposes a methodology to assess present and future flood hazard and risk in west-boundary low-lying coastal lagoons, using the Ria de Aveiro (Portugal) as case study. A multidisciplinary approach supported on Source–Pathway–Receptor–Consequence model combined with a GIS-based multi-criteria analysis was developed and applied. This comprised the following steps: (1) definition of present and future climate scenarios associated with oceanic, fluvial and combined events, combining sea levels and river discharges for different return periods; (2) characterization of flooding pathway through hydrodynamic modelling; (3) assessment of flood hazard combining flood depth and probability from hydrodynamic simulations; (4) assessment of flood risk calculating the adverse consequences on assets exposed to flood hazard. Results highlight that endangered regions are strongly dependent on the floods origin: oceanic floods threaten settlements and economic activities located along the margins of the lagoon main channels as well as habitats in the lagoon central area; fluvial floods endanger the river’s mouth adjacent areas causing damage in restricted settlements, economic activities and farmland habitats; the combined floods also threaten the margins adjacent to the transition zones. For future scenarios, it is predicted the flood risk increase/decrease for oceanic/fluvial events, as a consequence of mean sea level rise/river discharges reduction predicted for the region. Finally, this work demonstrated the value of the methodology proposed and its potential for flood risk analysis, supporting the decision-making process underlying the flood risk management.


Ria de Aveiro Hydrodynamic modelling Flood hazard Flood damage Multi-criteria analysis Future scenarios 



Thanks for the financial support to CESAM (UID/AMB/50017/2013), to FCT/MEC through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. The first author benefited from a Ph.D. Grant (SFRH/BD/78345/2011) given by the Portuguese Science Foundation FCT (Fundação para a Ciência e Tecnologia). The authors also thank the ADAPTARia project team for the discharge data.

Supplementary material

11069_2017_3025_MOESM1_ESM.tif (4 mb)
Supplementary material 1 (TIFF 4047 kb)
11069_2017_3025_MOESM2_ESM.tif (4.4 mb)
Supplementary material 2 (TIFF 4524 kb)
11069_2017_3025_MOESM3_ESM.tif (4.5 mb)
Supplementary material 3 (TIFF 4604 kb)
11069_2017_3025_MOESM4_ESM.tif (4.5 mb)
Supplementary material 4 (TIFF 4582 kb)
11069_2017_3025_MOESM5_ESM.tif (4.4 mb)
Supplementary material 5 (TIFF 4544 kb)
11069_2017_3025_MOESM6_ESM.tif (4.6 mb)
Supplementary material 6 (TIFF 4664 kb)
11069_2017_3025_MOESM7_ESM.tif (4.6 mb)
Supplementary material 7 (TIFF 4708 kb)


  1. Alves FL, Coelho C, Coelho CD, Pinto P (2011) Modelling coastal vulnerabilities—tool for decision support system at inter-municipality level. J Coast Res SI64:966–970Google Scholar
  2. Apel H, Thieken AH, Merz B, Bloschl G (2004) Flood risk assessment and associated uncertainty. Nat Hazard Earth Syst 4:295–308CrossRefGoogle Scholar
  3. Apel H, Merz B, Thieken AH (2008) Quantification of uncertainties in flood risk assessments. Int J River Basin Manag 6:149–162CrossRefGoogle Scholar
  4. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment—Part 1: model development. J Am Water Resour As 34:73–89CrossRefGoogle Scholar
  5. Burzel A, Dassanayake DR, Oumeraci H (2015) Spatial modeling of tangible and intangible losses in integrated coastal flood risk analysis. Coast Eng J 57:1540008CrossRefGoogle Scholar
  6. Carrasco AR, Ferreira O, Roelvink D (2016) Coastal lagoons and rising sea level: a review. Earth-Sci Rev 154:356–368CrossRefGoogle Scholar
  7. Dassanayake DR, Burzel A, Oumeraci H (2015) Methods for the evaluation of intangible flood losses and their integration in flood risk analysis. Coast Eng J 57:1540007CrossRefGoogle Scholar
  8. de Moel H, van Vliet M, Aerts JCJH (2014) Evaluating the effect of flood damage-reducing measures: a case study of the unembanked area of Rotterdam, the Netherlands. Reg Environ Change 14:895–908Google Scholar
  9. Dias JM, Lopes CL, Coelho C, Pereira C, Alves FL, Sousa LP, Antunes IC, Fernandes MD, Phillips MR (2014) Influence of climate change on the Ria de Aveiro littoral: adaptation strategies for flooding events and shoreline retreat. J Coast Res SI70:320–325CrossRefGoogle Scholar
  10. Dolbeth M, Stalnacke P, Alves FL, Sousa LP, Gooch GD, Khokhlov V, Tuchkovenko Y, Lloret J, Bielecka M, Rozynski G, Soares JA, Baggett S, Margonski P, Chubarenko BV, Lillebo AI (2016) An integrated Pan-European perspective on coastal Lagoons management through a mosaic-DPSIR approach. Sci Rep 6:19400CrossRefGoogle Scholar
  11. EXCIMAP (2007) Handbook on good practices for flood mapping in Europe. European Exchange Circle on Flood MappingGoogle Scholar
  12. Fortunato AB, Rodrigues M, Dias JM, Lopes C, Oliveira A (2013) Generating inundation maps for a coastal lagoon: A case study in the Ria de Aveiro (Portugal). Ocean Eng 64:60–71CrossRefGoogle Scholar
  13. Freire P, Tavares AO, Sá L, Oliveira A, Fortunato AB, dos Santos PP, Rilo A, Gomes JL, Rogeiro J, Pablo R, Pinto PJ (2016) A local-scale approach to estuarine flood risk management. Nat Hazards 84:1705–1739CrossRefGoogle Scholar
  14. Génio L, Sousa A, Vaz N, Dias JM, Barroso C (2008) Effect of low salinity on the survival of recently hatched veliger of Nassarius reticulatus (L.) in estuarine habitats: a case study of Ria de Aveiro. J Sea Res 59:133–143CrossRefGoogle Scholar
  15. Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190Google Scholar
  16. Kaplan EL, Meier P (1958) Nonparametric-estimation from incomplete observations. J Am Stat As 53:457–481CrossRefGoogle Scholar
  17. Kubal C, Haase D, Meyer V, Scheuer S (2009) Integrated urban flood risk assessment—adapting a multicriteria approach to a city. Nat Hazard Earth Syst 9:1881–1895CrossRefGoogle Scholar
  18. Lopes CL (2016) Flood risk assessment in Ria de Aveiro under present and future scenarios. Ph.D. Thesis, University of AveiroGoogle Scholar
  19. Lopes CL, Dias JM (2015a) Assessment of flood hazard during extreme sea levels in a tidally dominated lagoon. Nat Hazards 77:1345–1364CrossRefGoogle Scholar
  20. Lopes CL, Dias JM (2015b) Tidal dynamics in a changing lagoon: flooding or not flooding the marginal regions. Estuar Coast Shelf Sci 167:14–24CrossRefGoogle Scholar
  21. Lopes CL, Silva PA, Dias JM, Rocha A, Picado A, Plecha S, Fortunato AB (2011) Local sea level change scenarios for the end of the 21st century and potential physical impacts in the lower Ria de Aveiro (Portugal). Cont Shelf Res 31:1515–1526CrossRefGoogle Scholar
  22. Lopes CL, Azevedo A, Dias JM (2013) Flooding assessment under sea level rise scenarios: Ria de Aveiro case study. J Coast Res SI65:766–771CrossRefGoogle Scholar
  23. Marcos M, Jorda G, Gomis D, Perez B (2011) Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob Planet Change 77:116–128CrossRefGoogle Scholar
  24. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  25. Merz B, Kreibich H, Thieken A, Schmidtke R (2004) Estimation uncertainty of direct monetary flood damage to buildings. Nat Hazard Earth Syst 4:153–163CrossRefGoogle Scholar
  26. Merz B, Kreibich H, Apel H (2008) Flood risk analysis: uncertainties and validation. Österreichische Wasser-und Abfallwirtschaft 60:89–94CrossRefGoogle Scholar
  27. Merz B, Kreibich H, Schwarze R, Thieken A (2010) Review article ‘Assessment of economic flood damage’. Nat Hazard Earth Syst 10:1697–1724CrossRefGoogle Scholar
  28. Messener F, Penning-Rowsell E, Green C, Meyer V, Tunstall S, van der Veen A (2007) Evaluating flood damages: guidance and recommendations on principles and methods. Hr Wallingford, Wallingford, p 178Google Scholar
  29. Meyer V, Haase D, Scheuer S (2007) GIS-based multicriteria analysis as decision support in flood risk management. Hr Wallingford, Wallingford, p 55Google Scholar
  30. Meyer V, Scheuer S, Haase D (2009a) A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat Hazards 48:17–39CrossRefGoogle Scholar
  31. Meyer V, Haase D, Scheuer S (2009b) Flood risk assessment in European river basins—concept, methods, and challenges exemplified at the Mulde river. Integr Environ Assess Manag 5:17–26CrossRefGoogle Scholar
  32. Monbaliu J, Chen ZY, Felts D, Ge JZ, Hissel F, Kappenberg J, Narayan S, Nicholls RJ, Ohle N, Schuster D, Sothmann J, Willems P (2014) Risk assessment of estuaries under climate change: Lessons from Western Europe. Coast Eng 87:32–49CrossRefGoogle Scholar
  33. Moreira MH, Queiroga H, Machado MM, Cunha MR (1993) Environmental gradients in a southern Europe estuarine system: Ria de Aveiro, Portugal implications for soft bottom macrofauna colonization. Neth J Aqua Ecol 27:465–482CrossRefGoogle Scholar
  34. Narayan S, Nicholls RJ, Clarke D, Hanson S, Reeve D, Horrillo-Caraballo J, le Cozannet G, Hissel F, Kowalska B, Parda R, Willems P, Ohle N, Zanuttigh B, Losada I, Ge JZ, Trifonova E, Penning-Rowsell E, Vanderlinden JP (2014) The SPR systems model as a conceptual foundation for rapid integrated risk appraisals: lessons from Europe. Coast Eng 87:15–31CrossRefGoogle Scholar
  35. Nathan RJ, Mcmahon TA (1990) Evaluation of automated techniques for base-flow and recession analyses. Water Resour Res 26:1465–1473CrossRefGoogle Scholar
  36. Penning-Rowsell E, Johnson C, Tunstall S, Tapsell S, Morris J, Chatterton J, Green C (2005) The benefits of flood and coastal risk management: a handbook of assessment techniques. Middlesex University Press, LondonGoogle Scholar
  37. PLRA (2011) Estudo de Actividades Económicas e suas Dinâmicas. Sociedade Polis Litoral Ria de Aveiro, p 348Google Scholar
  38. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5—Part I: model description, vol 349. Max-Planck-Institut für Meteorologie, HamburgGoogle Scholar
  39. Saaty TL (1977) Scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281CrossRefGoogle Scholar
  40. Schanze J (2006) Flood risk management—a basic framework. Nato Sci S Ss Iv Ear 67:1–20CrossRefGoogle Scholar
  41. Sousa LP, Lillebo AI, Gooch GD, Soares JA, Alves FL (2013) Incorporation of local knowledge in the identification of Ria de Aveiro lagoon ecosystem services (Portugal). J Coast Res SI65:1051–1056CrossRefGoogle Scholar
  42. Sousa LP, Sousa AI, Alves FL, Lillebo AI (2016) Ecosystem services provided by a complex coastal region: challenges of classification and mapping. Sci Rep 6:22782CrossRefGoogle Scholar
  43. Temmerman S, Meire P, Bouma TJ, Herman PMJ, Ysebaert T, De Vriend HJ (2013) Ecosystem-based coastal defence in the face of global change. Nature 504:79–83CrossRefGoogle Scholar
  44. Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge, pp 361–409Google Scholar
  45. Woodworth PL (2010) A survey of recent changes in the main components of the ocean tide. Cont Shelf Res 30:1680–1691CrossRefGoogle Scholar
  46. Yang ZQ, Wang TP, Voisin N, Copping A (2015) Estuarine response to river flow and sea-level rise under future climate change and human development. Estuar Coast Shelf Sci 156:19–30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Carina L. Lopes
    • 1
  • Fátima L. Alves
    • 2
  • João M. Dias
    • 1
  1. 1.NMEC – Estuarine and Coastal Modelling Division, Physics Department, CESAM - Centre for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal
  2. 2.G_INTRA – Environmental Instruments Group, Department of Environment and Planning, CESAM - Centre for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal

Personalised recommendations