Natural Hazards

, Volume 93, Supplement 1, pp 39–60 | Cite as

Towards a better understanding of the evolution of the flood risk in Mediterranean urban areas: the case of Barcelona

  • Maria Cortès
  • Maria Carmen Llasat
  • Joan Gilabert
  • Montserrat Llasat-Botija
  • Marco Turco
  • Raül Marcos
  • Juan Pedro Martín Vide
  • Lluís Falcón
Original Paper


This contribution explores the evolution of the flood risk in the Metropolitan Area of Barcelona (MAB; Northeast Spain) from 1981 to 2015, and how it has been affected by changes in land use, population and precipitation. To complete this study, we analysed PRESSGAMA and INUNGAMA databases to look for all the information related to the floods and flash floods that have affected the chosen region. The “Consorcio de Compensación de Seguros”, a state insurance company for extraordinary risks, provided data on economic damage. The extreme precipitation trend was analysed by the Fabra Observatory and El Prat-Airport Observatory, and daily precipitation data were provided by the State Meteorological Agency of Spain (AEMET) and the Meteorological Service of Catalonia (SMC). Population data were obtained from the Statistical Institute of Catalonia (IDESCAT). Changes in land use were estimated from the land use maps for Catalonia corresponding to 1956, 1993, 2000, 2005 and 2009. Prevention measures like rainwater tanks and improvements to the drainage system were also been considered. The specific case of Barcelona is presented, a city recognised by United Nations International Strategy for Disaster Reduction as a model city for urban resilience to floods. The evolution of flood events in the MAB does not show any significant trend for this period. We argue that the evolution in floods can be explained, at least in part, by the lack of trend in extreme precipitation indices, and also by the improvements in flood prevention measures.


Floods Flash floods Changes in land use Vulnerability Precipitation extremes Barcelona 



This work has been supported by the Spanish Project HOPE (CGL2014-52571-R) of the Ministry of Economy, Industry and Competitiveness, and the Metropolitan Area of Barcelona Project (No. 308321) (Flood evolution in the Metropolitan Area of Barcelona from a holistic perspective: past, present and future). It was developed in the framework of the HyMeX Programme (HYdrological cycle in the Mediterranean EXperiment). We would like to thank AEMET, SMC and ACA for the meteorological and hydrological information provided for this study. Thanks also to BCASA for the detailed information about the system used to prevent and manage floods. M. Turco was supported by the Spanish Juan de la Cierva Programme (Grant Code: IJCI-2015-26953). We would also like to acknowledge Hannah Bestow for the correction of the English language of this paper.


  1. Alfieri L, Feyen L, Di Baldassarre G (2016) Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies. Clim Change 136(3–4):507–521CrossRefGoogle Scholar
  2. Amaro J, Gayà M, Aran M, Llasat MC (2010) Preliminary results of the Social Impact Research Group of MEDEX: the request database (2000–2002) of two Meteorological Services. Nat Hazards Earth Syst Sci 10(12):2643–2652. doi: 10.5194/nhess-10-2643-2010 CrossRefGoogle Scholar
  3. Barbería L, Amaro J, Aran M, Llasat MC (2014) The role of different factors related to social impact of heavy rain events: considerations about the intensity thresholds in densely populated areas. Nat Hazards Earth Syst Sci 14(7):1843–1852. doi: 10.5194/nhess-14-1843-2014 CrossRefGoogle Scholar
  4. Barnolas M, Llasat MC (2007) Metodología para el estudio de inundaciones históricas en España e implementación de un SIG en las cuencas del Ter, Segre y Llobregat. Centro de Estudios Hidrográficos (CEDEX), EspañaGoogle Scholar
  5. Barredo JI, Saurí D, Llasat MC (2012) Assessing trends in insured losses from floods in Spain 1971–2008. Nat Hazards Earth Syst Sci 12(5):1723–1729CrossRefGoogle Scholar
  6. Barrera-Escoda A, Llasat MC (2015) Evolving flood patterns in a Mediterranean region (1301–2012) and climatic factors—the case of Catalonia. Hydrol Earth Syst Sci 19:465–483. doi: 10.5194/hess-19-465-2015 CrossRefGoogle Scholar
  7. Barrera-Escoda A, Llasat MC, Barriendos M (2006) Estimation of the extreme flash flood evolution in Barcelona county from 1351 to 2005. Nat Hazards Earth Syst Sci 6:505–518CrossRefGoogle Scholar
  8. Barriendos M, Coeur D, Lang M, Llasat MC, Naulet R, Lemaitre F, Barrera A (2003) Stationarity analysis of historical flood series in france and spain (14th-20th centuries). Nat Hazards Earth Syst Sci 3:583–592CrossRefGoogle Scholar
  9. Benoit G, Comeau A (2005) A Sustainable Future for the Mediterranean: The Blue Plan’s Environment and Development Outlook. EarthscanGoogle Scholar
  10. Blöschl G, Viglione A, Montanari A (2013) Emerging Approaches to Hydrological Risk Management in a Changing World. Climate vulnerability: understanding and addressing threats to essential resources. Elsevier Inc., Academic Press, London, pp 3–10CrossRefGoogle Scholar
  11. Bodoque JM, Amérigo M, Díez-Herrero A, García JA, Cortés B, Ballesteros-Cánovas JA, Olcina J (2016) Improvement of resilience of urban areas by integrating social perception in flash-flood risk management. J Hydrol 541:665–676CrossRefGoogle Scholar
  12. Casas-Castillo C, Cunillera J, Xènia D, Herrero M, Ninyerola M, Xavier P, Redaño A, Rius A, Rodriguez R (2005) Mapes de precipitació màxima diària esperada a catalunya per a diferents períodes de retorn. Servei Meteorològic de Catalunya, Departament de Medi Ambient i Habitatge: Generalitat de Catalunya, ISBN: 84-393-6870-4Google Scholar
  13. Ceola S, Laio F, Montanari A (2014) Satellite nighttime lights reveal increasing human exposure to floods worldwide. Geophys Res Lett 41(20):7184–7190CrossRefGoogle Scholar
  14. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. Mc Graw Hill, New YorkGoogle Scholar
  15. Del Moral A, Llasat MC, Rigo T (2016) Identification of anomalous motion of thunderstorms using daily rainfall fields. Atmos Res 185:92–100. doi: 10.1016/j.atmosres.2016.11.001 CrossRefGoogle Scholar
  16. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Wernli H (2014) HyMeX: a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Amer Meteorol Soc 95(7):1063–1082. doi: 10.1175/BAMS-D-12-00242.1 CrossRefGoogle Scholar
  17. Eurostat (2016) Eurostat regional yearbook. Accessed 3 July 2017
  18. Faccini F, Luino F, Sacchini A, Turconi L (2015) Flash flood events and urban development in Genoa (Italy): lost in translation. Engineering geology for society and territory, vol 5. Springer, Berlin, pp 797–801Google Scholar
  19. García LE, Matthews JH, Rodriguez DJ, Wijnen M, DiFrancesco KN, Ray P (2014) Beyond downscaling: a bottom-up approach to climate adaptation for water resources management. AGWA report 01. World Bank Group, Washington, DCGoogle Scholar
  20. Gascón E, Laviola S, Merino A, Miglietta MM (2016) Analysis of a localized flash-flood event over the central Mediterranean. Atmos Res 182:256–268CrossRefGoogle Scholar
  21. Hall J, Arheimer B, Borga M, Brázdil R, Claps P, Kiss A, Blösch IG (2014) Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol Earth Syst Sci 18:2735–2772. doi: 10.5194/hess-18-2735-2014 CrossRefGoogle Scholar
  22. Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Climate Change 3(9):816–821CrossRefGoogle Scholar
  23. Institut d’Estadística de Catalunya (IDESCAT, Statistical Institute of Catalonia) (2016) Anuari estadístic de Catalunya (Statistical Yearbook of Catalonia). Accessed 28 Feb 2017
  24. Instituto Nacional de Estadística (INE). Accessed 28 Feb 2017
  25. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaption (SREX). Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  26. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. IPCC Working Group II contribution to the fifth assessment report of the intergovernmental panel on climate change.
  27. Karagiorgos K, Thaler T, Hübl J, Maris F, Fuchs S (2016) Multi-vulnerability analysis for flash flood risk management. Nat Hazards 82(1):63–87CrossRefGoogle Scholar
  28. Kendall MG (1975) Rank correlation methods. Oxford University Press, New YorkGoogle Scholar
  29. Llasat MC, Siccardi F (2010) A reflection about the social and technological aspects in flood risk management—the case of the Italian Civil Protection. Nat Hazards Earth Syst Sci 10:109–119CrossRefGoogle Scholar
  30. Llasat MC, Barriendos M, Barrera A, Rigo T (2005) Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. Applications of palaeoflood hydrology and historical data in flood risk analysis. J Hydrol 313:32–47CrossRefGoogle Scholar
  31. Llasat MC, Llasat-Botija M, López L (2009) A press database on natural risks and its application in the study of floods in Northeastern Spain. Nat Hazards Earth Syst Sci 9:2049–2061CrossRefGoogle Scholar
  32. Llasat MC, Llasat-Botija M, Petrucci O, Pasqua AA, Rosselló J, Vinet F, Boissier L (2013) Towards a database on societal impact of Mediterranean floods in the framework of the HYMEX project. Nat Hazards Earth Syst Sci 13:1–14CrossRefGoogle Scholar
  33. Llasat MC, Marcos R, Llasat-Botija M, Gilabert J, Turco M, Quintana-Seguí P (2014a) Flash flood evolution in North-Western Mediterranean. Atmos Res 149:230–243CrossRefGoogle Scholar
  34. Llasat MC, Turco M, Quintana-Seguí P, Llasat-Botija M (2014b) The snow storm of 8 March 2010 in Catalonia (Spain): a paradigmatic wet-snow event with a high societal impact. Nat Hazards Earth Syst Sci 14:427–441. doi: 10.5194/nhess-14-427-2014 CrossRefGoogle Scholar
  35. Llasat MC, Marcos R, Turco M, Gilabert J, Llasat-Botija M (2016) Trends in flash flood events versus convective precipitation in the Mediterranean region: the case of Catalonia. J Hydrol 541:24–37CrossRefGoogle Scholar
  36. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  37. Martín Vide J, (coord.) et al (2016) Tercer Informe sobre el canvi climàtic a Catalunya (Third Report in Climate Change in Catalonia). Generalitat de Catalunya-Institut d’Estudis Catalans. ISBN 9788499653174 (IEC). ISBN 9788439394488 (Generalitat de Catalunya) Barcelona, 611 pGoogle Scholar
  38. Mediero L, Jiménez-Álvarez A, Garrote L (2010) Design flood hydrographs from the relationship between flood peak and volume. Hydrol Earth Syst Sci 14(12):2495CrossRefGoogle Scholar
  39. Merz B, Kreibich H, Schwarze R, Thieken A (2010) Review article “assessment of economic flood damage”. Nat Hazards Earth Syst Sci 10:1697–1724. doi: 10.5194/nhess-10-1697-2010 CrossRefGoogle Scholar
  40. Nakamura I, Llasat MC (2017) Flood risk management and information—a comparative study between Japan and Spain on flood risk and warning. Nat Hazards 87:919. doi: 10.1007/s11069-017-2802-x CrossRefGoogle Scholar
  41. Schröter K, Kunz M, Elmer F, Mühr B, Merz B (2015) What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrol Earth Syst Sci 19(1):309–327CrossRefGoogle Scholar
  42. Terti G, Ruin I, Anquetin S, Gourley JJ (2015) Dynamic vulnerability factors for impact-based flash flood prediction. Nat Hazards 79(3):1481–1497CrossRefGoogle Scholar
  43. Thieken AH, Bessel T, Kienzler S, Kreibich H, Müller M, Pisi S, Schröter K (2016) The flood of June 2013 in Germany: how much do we know about its impacts? Nat Hazards Earth Syst Sci Discuss (Janu) 1–57Google Scholar
  44. Turco M, Llasat MC (2011) Trends in indices of daily precipitation extremes in Catalonia (NE Spain). 1951–2003. Nat Hazards Earth Syst Sci 11:3213–3226CrossRefGoogle Scholar
  45. Turco M, Marcos R, Quintana-Seguí P, Llasat MC (2014) Testing instrumental and downscaled reanalysis time series for temperature trends in NE of Spain in the last century. Reg Environ Change 14:1811. doi: 10.1007/s10113-012-0363-9 CrossRefGoogle Scholar
  46. Turco M, Palazzi E, von Hardenberg J, Provenzale A (2015) Observed climate change hotspots. Geophys Res Lett 42:3521–3528. doi: 10.1002/2015GL063891 CrossRefGoogle Scholar
  47. Turco M, Llasat MC, Herrera S, Gutiérrez JM (2017) Bias correction and downscaling of future RCM precipitation projections using a MOS-Analog technique. J Geophys Res Atmos. doi: 10.1002/2016JD025724 Google Scholar
  48. UNISDR (United Nations International Strategy for Disaster Reduction) (2007) Hyogo framework for action 2005–2015. Accessed 28 Feb 2017
  49. UNISDR (United Nations International Strategy for Disaster Reduction) (2015a) Sendai framework for disaster risk reduction 2015–2030. Accessed 28 Feb 2017
  50. UNISDR (United Nations International Strategy for Disaster Reduction) (2015b) Making cities resilient: My city is getting ready. Accessed 28 Feb 2017
  51. Wilby RL, Dessai S (2010) Robust adaptation to climate change. Weather 65(7):180–185CrossRefGoogle Scholar
  52. WMO (World Meteorological Organization) (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. Technical report. WCDMP 72, Geneva, SwitzerlandGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.GAMA, Department of Applied PhysicsUniversity of BarcelonaBarcelonaSpain
  2. 2.Cartographic and Geological Institute of CataloniaBarcelonaSpain
  3. 3.Barcelona Supercomputing Center-Centro Nacional de SupercomputaciónBarcelonaSpain
  4. 4.Department of Civil and Environmental EngineeringUPC, Barcelona TechBarcelonaSpain
  5. 5.Urban Architect, FALCON Architecture and UrbanismBarcelonaSpain

Personalised recommendations