Natural Hazards

, Volume 87, Issue 2, pp 1189–1222 | Cite as

Numerical simulation of the 30–45 ka debris avalanche flow of Montagne Pelée volcano, Martinique: from volcano flank collapse to submarine emplacement

  • Morgane BrunetEmail author
  • Laurent Moretti
  • Anne Le Friant
  • Anne Mangeney
  • Enrique Domingo Fernández Nieto
  • Francois Bouchut
Original Paper


We simulate here the emplacement of the debris avalanche generated by the last flank collapse event of Montagne Pelée volcano (30–45 ka), Martinique, Lesser Antilles. Our objective is to assess the maximum distance (i.e., runout) that can be reached by this type of debris avalanche as a function of the volume involved. Numerical simulations are performed using two complementary depth-averaged thin-layer continuum models because no complete models were available in the literature. The first model, SHALTOP, accurately describes dry granular flows over a 3D topography and may be easily extended to describe submarine avalanches. The second model, HYSEA, describes the subaerial and submarine parts of the avalanche as well as its interaction with the water column. However, HYSEA less accurately describes the thin-layer approximation on the 3D topography. Simulations were undertaken testing different empirical friction laws and debris avalanche volume flows. Our study suggests that large collapses (~25 km3) probably occurred in several times with successive volumes smaller than about 5 km3 entering the sea. This result provides new constraints on the emplacement processes of debris avalanches associated with these collapses which can drastically change the related hazard assessment such as the generated tsunami, in a region known for its seismic and volcanic risks.


Numerical modeling Volcano flank collapse Montagne Pelée volcano Martinique Debris avalanche deposit 



We thank Christine Deplus and staff scientists for the data provided by the AGUADOMAR and CARAVAL cruises. IGN provided to IPGP volcano observatories the DTM of Martinique Island used in this study. This study was financially supported by the ANR-13-BS06-0009 CARIB and the Labex UnivEarthS. For the numerical aspects, this work has been funded by the ANR contract ANR-11-BS01-0016 LANDQUAKES, the USPC PEGES project and the ERC contract ERC-CG-2013-PE10-617472 SLIDEQUAKES and the Spanish Government and FEDER through the Research Project MTM2015-70490-C2-2-R.


  1. Abadie S, Morichon D, Grilli S, Glockner S (2008) VOF/Navier-Stokes numerical modeling of surface waves generated by subaerial landslides. La Houille Blanche 1:21–26. doi: 10.1051/lhb:2008001 CrossRefGoogle Scholar
  2. Abadie S, Morichon D, Grilli S, Glockner S (2010) Numerical simulation of waves generated by landslide using a multiple-fluid Navier–Stokes model. Coast Eng 57:779–794. doi: 10.1016/j.coastaleng.2010.03.003 CrossRefGoogle Scholar
  3. Abadie S, Harris J, Grilli S (2011, January) Numerical simulation of tsunami generation by the potential flank collapse of the Cumbre Vieja Volcano. In: The 21st international offshore and polar engineering conference. International Society of Offshore and Polar EngineersGoogle Scholar
  4. Abadie SM, Harris JC, Grilli ST, Fabre R (2012) Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. J Geophys Res Oceans 117(C5):C05030CrossRefGoogle Scholar
  5. Bayarri MJ, Berger JO, Calder ES, Patra AK, Pitman EB, Spiller ET, Wolpert RL (2015) Probabilistic quantification of hazards: a methodology using small ensembles of physics-based simulations and statistical surrogates. Int J Uncertain Quantif 5(4):297–325CrossRefGoogle Scholar
  6. Bouchut F, Westdickenberg M (2004) Gravity driven shallow water models for arbitrary topography. Commun Math Sci 2(3):359–389CrossRefGoogle Scholar
  7. Bouchut F, Mangeney-Castelnau A, Perthame B, Vilotte J-P (2003) A new model of saint venant and savage-hutter type for gravity driven shallow water flows. CR Math 336(6):531–536Google Scholar
  8. Bouchut F, Fernandez-Nieto ED, Mangeney A, Narbona-Reina G (2015a) A two-phase shallow debris flow model with energy balance. Math Model Num Anal 49(1):101–140CrossRefGoogle Scholar
  9. Bouchut F, Fernandez-Nieto ED, Mangeney A, Narbona-Reina G (2015b) A two-phase two-layer model for fluidized granular flows with dilatancy effects. J Fluid Mech (submitted)Google Scholar
  10. Bouchut F, Fernandez-Nieto ED, Mangeney A, Narbona-Reina G (2016) A two-phase two-layer model for fluidized granular flows with dilatancy effects. J Fluid Mech 801:166–221CrossRefGoogle Scholar
  11. Boudon G, Le Friant A, Villemant B, Viode J-P (2005) Martinique. In Lindsay JM, Robertson REA, Shepherd JB, Shahiba A (eds) Volcanic atlas of the lesser antilles. Seismic Research Unit, University of the West Indies, Trinidad and Tobago, pp 127–146Google Scholar
  12. Boudon G, Le Friant A, Komorowski J-C, Deplus C, Semet MP (2007) Volcano flank instability in the Lesser Antilles arc: diversity of scale, processes, and temporal recurrence. J Geophys Res 112:B08205. doi: 10.1029/2006JB004674 CrossRefGoogle Scholar
  13. Brunet M, Le Friant A, Boudon G, Lafuerza S, Talling P, Hornbach M, Ishizuka O, Lebas E, Guyard H, IODPExpedition340 Science party (2016) Composition, geometry and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochem Geophys Geosyst. doi: 10.1002/2015GC006034 Google Scholar
  14. Campbell CS, Cleary PW, Hopkins M (1995) Large-scale landslide simulations: global deformation, velocities and basal friction. J Geophys Res 100:8267–8273CrossRefGoogle Scholar
  15. Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Volcanol Geotherm Res 94:1–19CrossRefGoogle Scholar
  16. Cassidy M, Trofimovs J, Watt SFL, Palmer MR, Taylor RN, Gernon TM, Talling PJ, Le Friant A (2012) Multi-stage collapse events in the South Soufrière Hills, Montserrat, as recorded in marine sediment cores. In: Wadge G, Robertson R, Voight B (eds) The eruption of Soufrière Hills volcano, Montserrat from 2000 to 2010. GB, Geological Society of London, London, pp 383–397Google Scholar
  17. Delannay R, Valance A, Mangeney A, Roche O, Richard P (2016) Granular and particle-laden flows: from laboratory experiments to field observations. J Phys D Appl Phys (in press)Google Scholar
  18. Denlinger RP, Iverson RM (2004) Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J Geophys Res 109:F01014. doi: 10.1029/2003JF000085 Google Scholar
  19. Deplus C, Le Friant A, Boudon G, Komorowski J-C, Villemant B, Harford C, Ségoufin J, Cheminée J-L (2001) Submarine evidence for large-scale debris avalanches in the Lesser Antilles arc. Earth Planet Sci Lett 192:145–157CrossRefGoogle Scholar
  20. Favreau P, Mangeney A, Lucas A, Crosta G, Bouchut F (2010) Numerical modeling of landquakes. Geophys Res Lett 37:L15305CrossRefGoogle Scholar
  21. Fernandez-Nieto E, Bouchut F, Bresch D, Castro-Diaz MJ, Mangeney A (2008) A new Savage–Hutter type model for submarine avalanches and generated tsunami. J Comp Phys 227(16):7720–7754CrossRefGoogle Scholar
  22. Garcia MO, Meyerhoff Hull D (1994) Turbidites from giant Hawaiian landslides: results from Ocean Drilling Program site 842. Geology 22:159–162CrossRefGoogle Scholar
  23. Germa A, Quidelleur X, Lahitte P, Labanieh S, Chauvel C (2011) The K–Ar Cassignol–Gillot technique applied to western Martinique lavas: a record of the evolution of the recent Lesser Antilles island arc activity from 2 Ma to Mount Pelée volcanism. Quat Geochronol 6:341–355CrossRefGoogle Scholar
  24. Giachetti T, Paris R, Kelfoun K, Pérez-Torrado FJ (2011) Numerical modelling of the tsunami triggered by the Güìmar debris avalanche, Tenerife (Canary Islands): comparison with field-based data. Mar Geol 284(1):189–202CrossRefGoogle Scholar
  25. Gittings ML (1992) 1992 SAIC’s adaptive grid Eulerian Code. Defense nuclear agency numerical methods symposium, pp 28–30Google Scholar
  26. Harbitz CB, Glimsdal S, Bazin S, Zamora N, Smebye HC, Løvholt F, Bungum H, Gauer P, Kjekstad O (2012) Tsunami hazard in the Caribbean: regional exposure derived from credible worst case scenarios. Cont Shelf Res 38:1–23CrossRefGoogle Scholar
  27. Harris JC, Grilli ST, Abadie S, Bakhsh TT (2012) Near-and far-field tsunami hazard from the potential flank collapse of the Cumbre Vieja Volcano. In: The 22nd international offshore and polar engineering conference. International Society of Offshore and Polar EngineersGoogle Scholar
  28. Heinrich P, Boudon G, Komorowski JC, Sparks RSJ, Herd R, Voight B (2001a) Numerical simulation of the December 1997 debris avalanche in Montserrat. Geophys Res Lett 28(13):2529–2532CrossRefGoogle Scholar
  29. Heinrich P, Piatanesi A, Hebert H (2001b) Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua-New Guinea event. Geophys J Int 144:97–111CrossRefGoogle Scholar
  30. Hibert C, Mangeney A, Grandjean G, Shapiro N (2011) Slopes instabilities in the Dolomieu crater, la Réunion island : from the seismic signal to the rockfalls characteristics. J Geophys Res Earth Surf 116:F04032CrossRefGoogle Scholar
  31. Hungr O (2008) Simplified models of spreading flow of dry granular material. Can Geotech J 45:1156–1168. doi: 10.1139/T08-059 CrossRefGoogle Scholar
  32. Hunt JE, Wynn RB, Masson DG, Talling PJ, Teagle DA (2011) Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: a case study from Icod landslide on north Tenerife, Canary Islands. Geochem Geophys Geosyst 12(12):Q12007CrossRefGoogle Scholar
  33. Hunt JE, Wynn RB, Talling PJ, Masson DG (2013) Multistage collapse of eight western Canary Island landslides in the last 1.5 Ma: sedimentological and geochemical evidence from subunits in submarine flow deposits. Geochem Geophys Geosyst 14(7):2159–2181CrossRefGoogle Scholar
  34. Ionescu I, Mangeney A, Bouchut F, Roche O (2015) Viscoplastic modelling of granular column collapse with pressure and rate dependent viscosity. J NonNewton Fluid Mech 219:1–18CrossRefGoogle Scholar
  35. Iverson RM, George DL (2014) A depth-averaged debris flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc R Soc A 470:20130819CrossRefGoogle Scholar
  36. Kelfoun K (2011) Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long—runout volcanic avalanches. J Geophys Res Solid Earth 116:b08209. doi: 10.1029/2010JB007622 Google Scholar
  37. Kelfoun K, Vargas SV (2015) VolcFlow capabilities and perspectives of development for the simulation of lava flows. In: Harris AJL, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geological Society, London, Special Publications, London p 426Google Scholar
  38. Labazuy P (1996) Recurrent landslides events on the submarine flank of Piton de la Fournaise volcano (Reunion Island). In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets, vol. 110, Geol. Soc. Spec. Publ., London, pp 295–306. doi:  10.1144/GSL.SP.1996.110.01.23
  39. Le Friant A, Boudon G, Deplus C, Villemant B (2003a) Large scale flank collapse events during the activity of Montagne Peléee, Martinique, Lesser Antilles. J Geophys Res 108(B1):2055. doi: 10.1029/2001JB001624 CrossRefGoogle Scholar
  40. Le Friant A, Heinrich P, Deplus C, Boudon G (2003b) Numerical simulation of the last flank collapse event of Montagne Pelée, Martinique, Lesser Antilles. Geophys Res Lett 30(2):1034. doi: 10.1029/2002GL015903 CrossRefGoogle Scholar
  41. Le Friant A, Lebas E, Clément V, Boudon G, Deplus C, de Voogd B, Bachèlery P (2011) A new model for the evolution of la Réunion volcanic complex from complete geophysical surveys. Geophys Res Lett. doi: 10.1029/2011GL047489 Google Scholar
  42. Le Friant A, Ishizuka O, Stroncik NA, The Expedition 340 Scientists (2013). In: Proceedings of integrated ocean drilling program, 340, Integrated Ocean Drill. Program Manage. Int. Inc., Tokyo. doi: 10.2204/iodp.proc.340.2013
  43. Le Friant A et al (2015) Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: first scientific drilling of submarine volcanic island landslides by IODP Expedition 340. Geochem Geophys Geosyst. doi: 10.1002/2014GC005652 Google Scholar
  44. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  45. Levy C, Mangeney A, Bonilla F, Hibert C, Calder ES, Smith PJ (2015) Friction weakening in granular flows deduced from seismic records at the Soufrière Hills Volcano, Montserrat. J Geophys Res Solid Earth 120(11):7536–7557CrossRefGoogle Scholar
  46. Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nature Commun 5:3417Google Scholar
  47. Mangeney A, Heinrich Ph, Roche R, Boudon G, Cheminée JL (2000) Modeling of debris avalanche and generated water waves: application to real and potential events in Montserrat. Phys Chem Earth 25(9–11):741–745CrossRefGoogle Scholar
  48. Mangeney A, Bouchut F, Thomas N, Vilotte J, Bristeau M (2007) Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J Geophys Res 112:F02017CrossRefGoogle Scholar
  49. Mangeney-Castelnau A, Vilotte JP, Bristeau MO, Perthame B, Bouchut F, Simeoni C, Yernini S (2003) Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J Geophys Res 108(B11):2527CrossRefGoogle Scholar
  50. Mangeney-Castelnau A, Bouchut F, Vilotte J, Lajeunesse E, Aubertin A, Pirulli M (2005) On the use of saint venant equations to simulate the spreading of a granular mass. J Geophys Res 110:B09103CrossRefGoogle Scholar
  51. Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57:1–35CrossRefGoogle Scholar
  52. McGuire WJ (1996) Volcano instability: a review of contemporary themes. In: McGuire WJ et al (ed) Volcano instability on the earth and other planets, vol. 110, Geological Society Special Publication, London, pp 1–23. doi: 10.1144/GSL.SP.1996.110.01.01
  53. Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian ridge. J Geophys Res 94:17465–17484CrossRefGoogle Scholar
  54. Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian landslides. Annu Rev Earth Planet Sci 22(119–144):1994Google Scholar
  55. Moretti L, Mangeney A, Capdeville Y et al (2012) Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophys Res Lett 39:L16402CrossRefGoogle Scholar
  56. Moretti L, Allstadt K, Mangeney A, Capdeville Y, Stutzmann E, Bouchut F (2015) Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data. J Geophys Res Solid Earth 120(4):2579–2599CrossRefGoogle Scholar
  57. Oehler JF, Lenat JF, Labazuy P (2008) Growth and collapse of the Reunion Island volcanoes. Bull Volcanol 70:717–742. doi: 10.1007/s00445-007-0163-0 CrossRefGoogle Scholar
  58. Pailha M, Pouliquen O (2009) A two-phase flow description of the initiation of underwater granular avalanches. J Fluid Mech 633:115–135CrossRefGoogle Scholar
  59. Pelanti M, Bouchut F, Mangeney A (2008) Roe-type scheme for two-phase shallow granular flows over variable topography. ESAIM Math Model Num Anal 42:851–885CrossRefGoogle Scholar
  60. Pirulli M, Mangeney A (2008) Result of back-analysis of the propagation of rock avalanches as a function of the assumed Rheology. Rock Mech Rock Eng 41(1):59–84CrossRefGoogle Scholar
  61. Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Phil Trans R Soc A 363:1573–1601CrossRefGoogle Scholar
  62. Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11:542–548CrossRefGoogle Scholar
  63. Pouliquen O, Forterre Y (2002) Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J Fluid Mech 453:133–151CrossRefGoogle Scholar
  64. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, BerlinGoogle Scholar
  65. Rondon L, Pouliquen O, Aussillous P (2011) Granular collapse in a fluid: role of the initial volume fraction. Phys Fluids 23:073301CrossRefGoogle Scholar
  66. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215CrossRefGoogle Scholar
  67. Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock–ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J Geophys Res 115:F04026Google Scholar
  68. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  69. Viroulet S, Sauret A, Kimmoun O (2014) Tsunami generated by a granular collapse down a rough inclined plane. Europhys Lett 105:34004CrossRefGoogle Scholar
  70. Voight B, Komorowski JC, Norton GE et al (2002) The 26 December (Boxing day) 1997 sector collapse and debris avalanche at Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrie`re Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, 21, pp 363–407Google Scholar
  71. Wynn RB, Masson DG (2003) Canary Islands landslides and tsunami generation: can we use turbidite deposits to interpret landslide processes? In: Locat J, Mienert J (eds), Submarine mass movements and their consequences, Kluwer Academic Publ., Boston, London, pp 325–332Google Scholar
  72. Yamada M, Mangeney A, Matsushi Y, Moretti L (2016) Estimation of dynamic friction process of the Akatani landslide based on the waveform inversion and numerical simulation Geophys J Int (accepted)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Laboratoire des Systèmes VolcaniquesInstitut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS UMR 7154ParisFrance
  2. 2.ANGE Team, CEREMA, INRIALab. J. Louis LionsParisFrance
  3. 3.Departamento Matemática Aplicada I, E.T.S. ArquitecturaUniversidad de SevillaSevillaSpain
  4. 4.Laboratoire d’Analyse et de Mathématiques Appliquées, CNRS, UPEM, UPECUniversité Paris-Est Marne-la-ValléeChamps-sur-MarneFrance

Personalised recommendations