Natural Hazards

, Volume 87, Issue 1, pp 145–164

A heuristic approach to global landslide susceptibility mapping

Original Paper
  • 330 Downloads

Abstract

Landslides can have significant and pervasive impacts to life and property around the world. Several attempts have been made to predict the geographic distribution of landslide activity at continental and global scales. These efforts shared common traits such as resolution, modeling approach, and explanatory variables. The lessons learned from prior research have been applied to build a new global susceptibility map from existing and previously unavailable data. Data on slope, faults, geology, forest loss, and road networks were combined using a heuristic fuzzy approach. The map was evaluated with a Global Landslide Catalog developed at the National Aeronautics and Space Administration, as well as several local landslide inventories. Comparisons to similar susceptibility maps suggest that the subjective methods commonly used at this scale are, for the most part, reproducible. However, comparisons of landslide susceptibility across spatial scales must take into account the susceptibility of the local subset relative to the larger study area. The new global landslide susceptibility map is intended for use in disaster planning, situational awareness, and for incorporation into global decision support systems.

Keywords

Landslide Landslide susceptibility Remote sensing GIS Fuzzy logic 

References

  1. Ahmed MF, Rogers JD, Ismail EH (2014) A regional level preliminary landslide susceptibility study of the upper Indus river basin. Eur J Remote Sens 47:343–373. doi:10.5721/EuJRS20144721 CrossRefGoogle Scholar
  2. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010 CrossRefGoogle Scholar
  3. Beguería S (2006) Changes in land cover and shallow landslide activity: a case study in the Spanish Pyrenees. Geomorphology 74:196–206. doi:10.1016/j.geomorph.2005.07.018 CrossRefGoogle Scholar
  4. Bhatt BP, Awasthi KD, Heyojoo BP et al (2013) Using geographic information system and analytical hierarchy process in landslide hazard zonation. Appl Ecol Environ Sci 1:14–22. doi:10.12691/aees-1-2-1 Google Scholar
  5. BMTPC (Building Materials and Technology Promotion Council Ministry of Urban Development and Poverty Alleviation Government of India), CDMM (Centre for Disaster Mitigation and Management, Anna University) (2003) Landslide Hazard Zonation Atlas of India. New DelhiGoogle Scholar
  6. Bonham-Carter G (1994) Geographic information systems for geoscientists: modelling with GIS. Elsevier, AmsterdamGoogle Scholar
  7. Bouysse P (2009) Geological map of the world at 1:50 000 000. Commission for the Geological Map of the WorldGoogle Scholar
  8. Brabb EE, Colgan JP, Best TC (1999) Map showing inventory and regional susceptibility for Holocene debris flows and related fast moving landslides in the conterminous United States. Accessed http://pubs.usgs.gov/mf/1999/2329/
  9. Bucknam RC, Coe JA, Chavarría MM et al (2001) Landslides triggered by Hurricane Mitch in Guatemala—inventory and discussion. US Geological Survey Open File Report 01-443:38Google Scholar
  10. Center for International Earth Science Information Network, Information Technology Outreach Services (2013) Global roads open access data set, version 1. http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1. Accessed 1 Jan 2015
  11. Cepeda J, Smebye, H, Vangelsten, B et al (2010) Landslide risk in Indonesia. Global assessment report on disaster risk reduction. United NationsGoogle Scholar
  12. Champati ray PK, Dimri S, Lakhera RC, Sati S (2007) Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4:101–111. doi:10.1007/s10346-006-0068-6 CrossRefGoogle Scholar
  13. Dahal RK, Hasegawa S, Nonomura A et al (2008) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102:496–510. doi:10.1016/j.geomorph.2008.05.041 CrossRefGoogle Scholar
  14. de Ferranti J (2014a) Digital Elevation Data—with SRTM voids filled using accurate topographic mapping. http://www.viewfinderpanoramas.org/dem3.html. Accessed 17 Nov 2015
  15. de Ferranti J (2014b) Digital Elevation Data: SRTM void fill. http://viewfinderpanoramas.org/voidfill.html. Accessed 19 May 2016
  16. Devoli G, Morales A, Høeg K (2007a) Historical landslides in Nicaragua—collection and analysis of data. Landslides 4:5–18. doi:10.1007/s10346-006-0048-x CrossRefGoogle Scholar
  17. Devoli G, Strauch W, Chávez G, Høeg K (2007b) A landslide database for Nicaragua: a tool for landslide-hazard management. Landslides 4:163–176. doi:10.1007/s10346-006-0074-8 CrossRefGoogle Scholar
  18. DOGAMI (Oregon Department of Geology and Mineral Industries) (2015) SLIDO: statewide landslide information layer for Oregon. http://www.oregongeology.org/sub/slido/data.htm. Accessed 11 Oct 2015
  19. dos Santos Alvalá RC, Camarinha PIM, Canavesi V (2013) Landslide susceptibility mapping in the coastal region in the State of São Paulo, Brazil. In: American Geophysical Union, Spring MeetingGoogle Scholar
  20. Elliott AH, Harty KM (2010) Landslide maps of Utah. Utah Geological Survey Map 246DM:14. 46 plates. 1:100,000 scale. DVDGoogle Scholar
  21. ESRI (2013) ArcGIS Desktop, version 10.2. Environmental Systems Research Institute, Redlands, CaliforniaGoogle Scholar
  22. Frolova JV, Gvozdeva IP, Kuznetsov NP (2015) Effects of Hydrothermal Alterations on Physical and Mechanical Properties of Rocks in the Geysers Valley (Kamchatka Peninsula) in Connection with Landslide Development. In: Proceedings World Geothermal Congress 2015, pp 1–6Google Scholar
  23. Gerencia de Geología (2012) Landslide inventory of El Salvador. Ministerio de Medio Ambiente y Recursos Naturales, El SalvadorGoogle Scholar
  24. Günther A, Van Den Eeckhaut M, Malet J-P et al (2014) Climate-physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 224:69–85. doi:10.1016/j.geomorph.2014.07.011 CrossRefGoogle Scholar
  25. Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI project: a bibliographical and archive inventory of landslides and floods in Italy. Environ Manag 18:623–633. doi:10.1007/BF02400865 CrossRefGoogle Scholar
  26. Haigh MJ, Rawat JS, Bartarya SK (1989) Environmental indicators of landslide activity along the Kilbury road, Nainital, Kumaun lesser Himalaya. Mt Res Dev 9:25–33CrossRefGoogle Scholar
  27. Haigh MJ, Rawat JS, Rawat MS et al (1995) Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. For Ecol Manag 78:173–189CrossRefGoogle Scholar
  28. Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693 CrossRefGoogle Scholar
  29. Haque U, Blum P, da Silva PF et al (2016) Fatal landslides in Europe. Landslides. doi:10.1007/s10346-016-0689-3 Google Scholar
  30. Hijmans RJ (2015) Raster: geographic data analysis and modeling. R package version 2.4-15. https://CRAN.R-project.org/package=raster
  31. Hirano A, Welch R, Lang H (2003) Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J Photogramm Remote Sens 57:356–370. doi:10.1016/S0924-2716(02)00164-8 CrossRefGoogle Scholar
  32. Hong Y, Adler RF, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256. doi:10.1007/s11069-006-9104-z CrossRefGoogle Scholar
  33. Hosmer DW, Lemeshow S (2005) Assessing the fit of the model. In: Applied logistic regression, 2nd edn. Wiley, Inc., Hoboken, NJ, USA, pp 143–202Google Scholar
  34. ICIMOD (International Centre for Integrated Mountain Development) (1992) Landslides in Koshi River Basin of 1990. http://rds.icimod.org/Home/DataDetail?metadataId=23175&searchlist=True. Accessed 7 Jan 2015
  35. ICIMOD (International Centre for Integrated Mountain Development) (2010) Landslides in Koshi River Basin of 2010. http://rds.icimod.org/Home/DataDetail?metadataId=23176&searchlist=True. Accessed 7 Jan 2015
  36. Jarvis A, Reuter H, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 4. Available from the CGIAR-CSI SRTM 90 m DatabaseGoogle Scholar
  37. Jezek KC (2002) RADARSAT-1 Antarctic mapping project: change-detection and surface velocity campaign. Ann Glaciol 34:263–268. doi:10.3189/172756402781818030 CrossRefGoogle Scholar
  38. Keefer DK (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 10:265–284. doi:10.1016/0169-555X(94)90021-3 CrossRefGoogle Scholar
  39. Kirschbaum DB, Adler RF, Hong Y et al (2010) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575. doi:10.1007/s11069-009-9401-4 CrossRefGoogle Scholar
  40. Kirschbaum D, Stanley T (2016) A satellite-based global landslide hazard assessment model for situational awareness. In: Geological society of america abstracts with programs, vol 48. doi:10.1130/abs/2016AM-279271
  41. Kirschbaum DB, Stanley T, Yatheendradas S (2015a) Modeling landslide susceptibility over large regions with fuzzy overlay. Landslides. doi:10.1007/s10346-015-0577-2 Google Scholar
  42. Kirschbaum DB, Stanley T, Zhou Y (2015b) Spatial and temporal analysis of a global landslide catalog. Geomorphology 249:4–15. doi:10.1016/j.geomorph.2015.03.016 CrossRefGoogle Scholar
  43. Korup O, Stolle A (2014) Landslide prediction from machine learning. Geol Today 30:26–33. doi:10.1111/gto.12034 CrossRefGoogle Scholar
  44. Larsen IJ, Montgomery DR (2012) Landslide erosion coupled to tectonics and river incision. Nat Geosci 5:468–473. doi:10.1038/ngeo1479 CrossRefGoogle Scholar
  45. Larsen MC, Parks JE (1997) How wide is a road? The association of roads and mass-wasting in a forested montane environment. Earth Surf Process Landf 22:835–848. doi:10.1002/(SICI)1096-9837(199709)22:9<835:AID-ESP782>3.0.CO;2-C CrossRefGoogle Scholar
  46. Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. EOS Trans Am Geophys Union 89:93. doi:10.1029/2008EO100001 CrossRefGoogle Scholar
  47. Liu C, Li W, Wu H et al (2013) Susceptibility evaluation and mapping of China’s landslides based on multi-source data. Nat Hazards 69:1477–1495. doi:10.1007/s11069-013-0759-y CrossRefGoogle Scholar
  48. Nadim F, Kjekstad O, Peduzzi P et al (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. doi:10.1007/s10346-006-0036-1 CrossRefGoogle Scholar
  49. NIMA (National Imagery and Mapping Agency) (1993) Vector map (VMap) level 0. http://earth-info.nga.mil/publications/vmap0.html. Accessed 1 Jan 2014
  50. Okamoto T, Sakurai M, Tsuchiya S (2013) Secondary hazards associated with coseismic landslide. In: Ugai K, Yagi H, Wakai A (eds) Earthquake-induced landslides. Springer, Berlin, pp 77–82CrossRefGoogle Scholar
  51. OpenStreetMap contributors (2015) OpenStreetMap. http://osm-x-tractor.org/Data.aspx. Accessed 7 Jun 2015
  52. Petley DN (2012) Global patterns of loss of life from landslides. Geology 40:927–930. doi:10.1130/G33217.1 CrossRefGoogle Scholar
  53. Petley DN, Dunning SA, Rosser NJ (2005) The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. CRC Press, Boca Raton, p 776Google Scholar
  54. Petley DN, Hearn GJ, Hart A et al (2007) Trends in landslide occurrence in Nepal. Nat Hazards 43:23–44. doi:10.1007/s11069-006-9100-3 CrossRefGoogle Scholar
  55. Pradhan B (2011) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63:329–349. doi:10.1007/s12665-010-0705-1 CrossRefGoogle Scholar
  56. Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57:241–262. doi:10.1016/S0924-2716(02)00124-7 CrossRefGoogle Scholar
  57. Radbruch-Hall DH, Colton RB, Davies WE et al (1982) Landslide overview map of the conterminous United States. U.S Government Printing Office, WashingtonGoogle Scholar
  58. Regmi AD, Devkota KC, Yoshida K et al (2013) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7:725–742. doi:10.1007/s12517-012-0807-z CrossRefGoogle Scholar
  59. Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29:779. doi:10.1130/0091-7613(2001)029<0779:VCPBHA>2.0.CO;2 CrossRefGoogle Scholar
  60. Rubel Y, Ahmed B (2013) Understanding the issues involved in urban landslide vulnerability in Chittagong metropolitan area. Association of American Geographers (AAG), BangladeshGoogle Scholar
  61. Scheidegger AE, Ai NS (1986) Tectonic processes and geomorphological design. Tectonophysics 126:285–300. doi:10.1016/0040-1951(86)90234-9 CrossRefGoogle Scholar
  62. Schutz BE, Zwally HJ, Shuman CA et al (2005) Overview of the ICESat mission. Geophys Res Lett 32:L21S01. doi:10.1029/2005GL024009 CrossRefGoogle Scholar
  63. Sidle RC, Pearce AJ, O’Loughlin CL (1985) Effects of land management on soil mass movement. In: Sidle RC, Pearce AJ, O’Loughlin CL (eds) Hillslope stability and land use. American Geophysical Union, Washington, pp 73–88CrossRefGoogle Scholar
  64. Sidle RC, Ziegler AD, Negishi JN et al (2006) Erosion processes in steep terrain—truths, myths, and uncertainties related to forest management in Southeast Asia. For Ecol Manag 224:199–225. doi:10.1016/j.foreco.2005.12.019 CrossRefGoogle Scholar
  65. Srivastava V, Srivastava HB, Lakhera RC (2010) Fuzzy gamma based geomatic modelling for landslide hazard susceptibility in a part of Tons river valley, northwest Himalaya, India. Geomat Nat Hazards Risk 1:225–242. doi:10.1080/19475705.2010.490103 CrossRefGoogle Scholar
  66. Steger S, Brenning A, Bell R et al (2016a) Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology 262:8–23. doi:10.1016/j.geomorph.2016.03.015 CrossRefGoogle Scholar
  67. Steger S, Brenning A, Bell R, Glade T (2016b) The impact of systematically incomplete and positionally inaccurate landslide inventories on statistical landslide susceptibility models. In: EGU general assembly conference abstracts 18:6666Google Scholar
  68. Tangestani MH (2004) Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchment area, southwest Iran. Aust J Earth Sci 51:439–450. doi:10.1111/j.1400-0952.2004.01068.x CrossRefGoogle Scholar
  69. USGS (United States Geological Survey) (2008) Global land survey digital elevation model. Global Land Cover Facility, University of Maryland, College Park, Maryland. http://glcf.umd.edu/data/glsdem/
  70. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131. doi:10.1016/j.enggeo.2008.03.010 CrossRefGoogle Scholar
  71. Verdin KL, Godt JW, Funk C et al (2007) Development of a global slope dataset for estimation of landslide occurrence resulting from earthquakes: U.S. Geological Survey, Colorado. Open-File Report 2007–1188:25Google Scholar
  72. Weirich F, Blesius L (2007) Comparison of satellite and air photo based landslide susceptibility maps. Geomorphology 87:352–364. doi:10.1016/j.geomorph.2006.10.003 CrossRefGoogle Scholar
  73. Zhang J, Gurung DR, Liu R et al (2015) Abe Barek landslide and landslide susceptibility assessment in Badakhshan Province, Afghanistan. Landslides 12:597–609. doi:10.1007/s10346-015-0558-5 CrossRefGoogle Scholar
  74. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2017

Authors and Affiliations

  1. 1.Universities Space Research AssociationColumbiaUSA
  2. 2.Goddard Earth Sciences Technology and ResearchColumbiaUSA
  3. 3.Hydrological Sciences LaboratoryNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations