Advertisement

Natural Hazards

, Volume 86, Issue 2, pp 953–967 | Cite as

Regional flood frequency analysis in the High Atlas mountainous catchments of Morocco

  • Wiam Zkhiri
  • Yves TramblayEmail author
  • Lahoucine Hanich
  • Brahim Berjamy
Original Paper

Abstract

In semi-arid catchments, the contribution of floods to annual runoff is important. The High Atlas Mountain catchments (N’Fis, Rheraya, Ourika, Zat and R’dat) located in the south of Morocco, upstream of the city of Marrakech, are an example of those basins where floods provide the main contribution to surface water resources. The goal of this study is to evaluate whether a regional flood frequency analysis could improve the estimation of the magnitude and the occurrence of floods in these mountainous catchments. The database considered is long-term measurement of daily discharge at the outlets with record length varying from 35 to 45 years. The index flood method is considered to build a regional model based on the generalized extreme values distribution. The results showed a contrasted seasonal behavior, with floods caused by either rainfall during the autumn season or a mix of rainfall and snowmelt for spring events. As a consequence, two distinct regional models have been computed, one for autumn and one for spring events. No significant trends have been found for seasonal maximum discharge in all the catchments. The results of the regional frequency analysis show that the regional model provides better flood quantiles estimates than a standard at-site model. However, there is a much greater uncertainty for both local and regional estimates of floods occurring during the autumn than during spring events, which are estimated with a good level of accuracy. This research provides insights into how to improve the estimation of flood return levels useful for water resources management in these semi-arid mountainous catchments.

Keywords

Floods Regional frequency analysis GEV Tensift Morocco Mountains 

Notes

Acknowledgements

The financial support provided by the LMI TREMA laboratory and IRD-ARTS studentship is gratefully acknowledged. Thanks are due to the hydrological basin agency Tensift (ABHT) for providing the data. The authors also wish to thank the reviewers for their constructive comments.

References

  1. Ahattab J, Serhir N, Lakhdal EK (2015) Mapping gradex values on the Tensift basin. Int J Eng Res Appl 5:01–07Google Scholar
  2. Anctil F, Martel N, Hoang VD (1998) Analyse régionale des crues journalières de la province de Québec. Can J Civ Eng 25:360–369CrossRefGoogle Scholar
  3. Bouaicha R, Benabdelfadel A (2010) Variabilité et gestion des eaux de surface au Maroc. Sécheresse 21:1–5Google Scholar
  4. Boudhar A, Hanich L, Boulet G, Duchemin B, Berjamy B, Chehbouni A (2009) Impact of the snow cover estimation method on the Snowmelt Runoff Model performance in the Moroccan High Atlas Mountains. Hydrol Sci J 54(6):1094–1112CrossRefGoogle Scholar
  5. Boudhar A, Duchemin B, Hanich L, Jarlan L, Chaponnière A, Maisongrande P et al. (2010) Long term analysis of snow-covered-area in the Moroccan High-Atlas through remote sensing. Int J Appl Earth Obs Geoinf 12:S109–S115CrossRefGoogle Scholar
  6. Chaponnière A, Boulet G, Chehbouni A, Aresmouk M (2008) Understanding hydrological processes with scarce data in a mountain environment. Hydrol Process 22:1908–1921CrossRefGoogle Scholar
  7. Chehbouni A, Escadafal R, Boulet G, Duchemin B, Simonneaux V, Dedieu G, Mougenot B, Khabba S, Kharrou H, Merlin O, Chaponnière A, Ezzahar J, Erraki S, Hoedjes J, Hadria R, Abourida H, Cheggour A, Raibi F, Boudhar A, Hanich L, Guemouria N, Chehbouni Ah, Olioso A, Jacob F, Sobrino J (2008) An integrated modelling and remote sensing approach for hydrological study in semi-arid regions: the SUDMED Program. Int J Remote Sens 29:5161–5181CrossRefGoogle Scholar
  8. Darlymple T (1960) Flood frequency analysis. U.S. Geological survey. Water supply paper 1543-AGoogle Scholar
  9. El Adlouni S, Bobée B, Ouarda TBMJ (2008) On the tails of extreme event distributions in hydrology. J Hydrol 355:16–33CrossRefGoogle Scholar
  10. Farquharson FAK, Meigh JR, Sutctiffe JV (1992) Regional flood frequency analysis in arid and semi-arid areas. J Hydrol 138:487–501CrossRefGoogle Scholar
  11. Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proc Camb Philos Soc 24:180–190CrossRefGoogle Scholar
  12. Garavaglia F, Lang M, Paquet E, Gailhard J, Garçon R, Renard B (2011) Reliability and robustness of rainfall compound distribution model based on weather pattern sub-sampling. Hydrol Earth Syst Sci 15:519–532CrossRefGoogle Scholar
  13. Garcia-Ruiz JM, Lopez-Moreno JI, Vicente-Serrano SM, Lasanta-Martinez T, Begueria S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105:121–139CrossRefGoogle Scholar
  14. GREHYS (Groupe de recherche en hydrologie statistique) (1996) Presentation and review of some methods for regional flood frequency analysis. J Hydrol 186:63–84CrossRefGoogle Scholar
  15. Hanich L, de Solan B, Duchemin B, Maisongrande P, Chaponnière A, Boulet G, Chehbouni G (2003) Snow cover mapping using SPOT‐VEGETATION with high resolution data: application in the Moroccan Atlas Mountains. In: Proceedings of IEEE international geoscience and remote sensing symposium (IGARSS), 21–25 July 2003, Toulouse, FranceGoogle Scholar
  16. Hazen A (1914) Storage to be provided in the impounding reservoirs for municipal water supply. Trans Am Soc Civil Eng 77:1547–1550Google Scholar
  17. Jarlan L, Khabba S, Er-Raki S, Le Page M, Hanich L, Fakir Y, Merlin O, Mangiarotti S, Gascoin S, Ezzahar J, Kharrou MH, Berjamy B, Saaïdi A, Boudhar A, Benkaddour A, Laftouhi N, Abaoui J, Tavernier A, Boulet G, Simonneaux V, Driouech F, El Adnani M, El Fazziki A, Amenzou N, Raibi F, El Mandour A, Ibouh H, Le Dantec V, Habets F, Tramblay Y, Mougenot B, Leblanc M, Drapeau L, Coudert B, Hagolle O, Filali N, Belaqziz S, Marchane A, Toumi J, Diarra A, Aouade G, Hajhouji Y, Bigeard G, Chirouze J, Boukhari K, Richard B, Fanise P, Kasbani M, Chakir A, Zribi M, Marah H, Mokssit A, Kerr Y, Escadafal R (2015) Remote sensing of water resources in semi-arid Mediterranean basins: The Joint International Laboratory TREMA. Int J Remote Sens 36:4879–4917CrossRefGoogle Scholar
  18. Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Q J R Meteorol Soc 81:158–171CrossRefGoogle Scholar
  19. Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(2002):1287–1304CrossRefGoogle Scholar
  20. Kochanek K, Renard B, Arnaud P, Aubert Y, Lang M, Cipriani T, Sauquet E (2014) A data-based comparison of flood frequency analysis methods used in France. Nat Hazards Earth Syst Sci 14:295–308CrossRefGoogle Scholar
  21. Lang M, Arnaud P, Carreau J, Deaux N, Dezileau L, Garavaglia F, Latapie A, Neppel L, Paquet E, Renard B, Soubeyroux JM, Terrier B, Veysseire JM, Aubert Y, Auffray A, Borchi F, Bernardara P, Carre JC, Chambon D, Cipriani T, Delgado JL, Doumenc H, Fantin R, Jourdain S, Kochanek K, Paquier A, Sauquet E, Tramblay Y (2014) Résultats du projet ExtraFlo (ANR 2009–2013) sur l’estimation des pluies et crues extrêmes [Main results of a French project on extreme rainfall and flood assessment]. Houille Blanche 2:5–13CrossRefGoogle Scholar
  22. Latron J, Llorens P, Gallart F (2009) The hydrology of Mediterranean mountain areas. Geogr Compass 3:2045–2064CrossRefGoogle Scholar
  23. Mann HB (1945) Non-parametric tests against trend. Econometrica 3:245–259CrossRefGoogle Scholar
  24. Marchane A, Jarlan L, Hanich L, Boudhar A, Gascoin S, Tavernier A, Filali N, Le Page M, Hagolle O, Berjamy B (2015) Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens Environ 160:72–86CrossRefGoogle Scholar
  25. Ouarda TBMJ, Lang M, Bobée B, Bernier J, Bois P (1999) Synthèse de modéles régionaux d’estimation de crue utilisés en France et au Québec. Rev Sci Eau 12(1):155–182Google Scholar
  26. Ouarda TBMJ, St-Hilaire A, Bobée B (2008) Synthèse des développements récents en analyse régionale des extrêmes hydrologiques. Rev Sci Eau 21(2):219–232Google Scholar
  27. Rao AR, Hamed KH (2001) Flood frequency analysis. CRC Press, New YorkGoogle Scholar
  28. Renard B, Lang M, Bois P (2006) Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data. Stoch Environ Res Risk Assess 21(2):97–112CrossRefGoogle Scholar
  29. Renard B, Kochanek K, Lang M, Garavaglia F, Paquet E, Neppel L, Najib K, Carreau J, Arnaud P, Aubert Y, Borchi F, Soubeyroux JM, Jourdain S, Veysseire JM, Sauquet E, Cipriani T, Auffray A (2013) Data-based comparison of frequency analysis methods: a general framework. Water Resour Res 49:825–843CrossRefGoogle Scholar
  30. Saidi MM, Daoudi L, Aresmouk M, Blali A (2003) Rôle du milieu physique dans l’amplification des crues en milieu montagnard: exemple de la crue du 17 août 1995 dans la vallée de l’Ourika (Haut-Atlas, Maroc. Sécheresse 14(2):1–8Google Scholar
  31. Saidi MM, Daoudi L, Aresmouk MH, Fniguire F (2010) Les crues de l’oued Ourika (Haut Atlas, Maroc): Événements extrêmes en contexte montagnard semi-aride [The Ourika floods (High Atlas, Morocco), Extreme events in semi-arid mountain context]. Comun Geol 97:113–128Google Scholar
  32. Saidi MM, Boukrim S, Fniguire F, Ramromi A (2012) Les écoulements superficiels sur le haut atlas de Marrakech, cas des débits extrêmes. Larhyss J ISSN 1112–3680(10):75–90Google Scholar
  33. Scholz F, Stephens M (1987) K-sample Anderson–Darling tests. J Am Stat As 82:918–924Google Scholar
  34. Schyns JF, Hoekstra AY (2014) The added value of water footprint assessment for national water policy: a case study for Morocco. PLoS ONE 9(6):e99705CrossRefGoogle Scholar
  35. Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New YorkGoogle Scholar
  36. Svensson C, Jones DA (2010) Review of rainfall frequency estimation methods. J Flood Risk Manag 3:296–313CrossRefGoogle Scholar
  37. Tramblay Y, St-Hilaire A, Ouarda T (2008) Frequency analysis of maximum annual suspended sediment concentrations in North America. Hydrol Sci J 53(1):236–252CrossRefGoogle Scholar
  38. Tramblay Y, Badi W, Driouech F, El Adlouni S, Neppel L, Servat E (2012) Climate change impacts on extreme precipitation in Morocco. Global Planet Change 82–83:104–114CrossRefGoogle Scholar
  39. Viglione A, Laio F, Claps P (2007) A comparison of homogeneity tests for regional frequency analysis. Water Resour Res. doi: 10.1029/2006WR005095 Google Scholar
  40. Wald A, Wolfowitz J (1943) An exact test for randomness in serial correlation. Ann Math Stat 14:378–388CrossRefGoogle Scholar
  41. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83CrossRefGoogle Scholar
  42. Zemzami M, Benaabidate L, Layan B, Dridri A (2013) Design flood estimation in ungauged catchments and statistical characterization using principal components analysis: application of Gradex method in Upper Moulouya. Hydrol Process 27:186–195. doi: 10.1002/hyp.9212 CrossRefGoogle Scholar
  43. Zoglat A, EL Adlouni S, Badaoui F, Amar A, Okou C (2014) Managing hydrological risks with extreme modeling: application of peaks over threshold model to the Loukkos Watershed. J Hydrol Eng Morocco. doi: 10.1061/(ASCE)HE.1943-5584.0000996 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Wiam Zkhiri
    • 1
  • Yves Tramblay
    • 2
    Email author
  • Lahoucine Hanich
    • 1
  • Brahim Berjamy
    • 3
  1. 1.Laboratoire de Géo-ressources - Unité associée au CNRST (URAC42), Département des Sciences de la Terre, Faculté des Sciences et TechniquesUniversité Cadi AyyadMarrakechMorocco
  2. 2.IRD – Hydro-Sciences Montpellier (UMR 5569)MontpellierFrance
  3. 3.Agence de bassin hydraulique du TensiftMarrakechMorocco

Personalised recommendations