Advertisement

Natural Hazards

, Volume 86, Issue 1, pp 353–391 | Cite as

Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast

  • Stéphan T. GrilliEmail author
  • Mike Shelby
  • Olivier Kimmoun
  • Guillaume Dupont
  • Dmitry Nicolsky
  • Gangfeng Ma
  • James T. Kirby
  • Fengyan Shi
Original Paper

Abstract

We perform numerical simulations to assess how coastal tsunami hazard from submarine mass failures (SMFs) is affected by slide kinematics and rheology. Two types of two-layer SMF tsunami generation models are used, in which the bottom (slide) layer is depth-integrated and represented by either a dense Newtonian fluid or a granular flow, in which inter-granular stresses are governed by Coulomb friction (Savage and Hutter model). In both cases, the upper (water) layer flow is simulated with the non-hydrostatic 3D σ-layer model NHWAVE. Both models are validated by simulating laboratory experiments for SMFs made of glass beads moving down a steep plane slope. In those, we assess the convergence of results (i.e., SMF motion and surface wave generation) with model parameters and their sensitivity to slide parameters (i.e., viscosity, bottom friction, and initial submergence). The historical Currituck SMF is simulated with the viscous slide model, to estimate relevant parameters for simulating tsunami generation from a possible SMF sited near the Hudson River Canyon. Compared to a rigid slump, we find that deforming SMFs of various rheology, despite having a slightly larger initial acceleration, generate a smaller tsunami due to their spreading and thinning out during motion, which gradually makes them less tsunamigenic; the latter behavior is controlled by slide rheology. Coastal tsunami hazard is finally assessed by performing tsunami simulations with the Boussinesq long wave model FUNWAVE-TVD, initialized by SMF tsunami sources, in nested grids of increasing resolution. While initial tsunami elevations are very large (up to 25 m for the rigid slump), nearshore tsunami elevations are significantly reduced in all cases (to a maximum of 6.5 m). However, at most nearshore locations, surface elevations obtained assuming a rigid slump are up to a factor of 2 larger than those obtained for deforming slides. We conclude that modeling SMFs as rigid slumps provides a conservative estimate of coastal tsunami hazard while using a more realistic rheology, in general, reduces coastal tsunami impact.

Keywords

Tsunami propagation Landslides Rheology Coastal geohazard Boussinesq and non-hydrostatic wave models 

Notes

Acknowledgements

SG, JK, and GM acknowledge support from grant CMMI-15-35568 of the United States (US) National Science Foundation (NSF), Engineering for Natural Hazard program; SG, MS, JK, and FS from grant NA-15-NWS-4670029 of the National Tsunami Hazard Mitigation Program (NTHMP) from the US Department of Commerce/National Oceanic at Atmospheric Administration (NOAA). DN’s research in this publication was sponsored by the State of Alaska and also by the University of Alaska Fairbanks Cooperative Institute for Alaska Research, with funds from NOAA under cooperative agreement NA-08-OAR-4320751 with the University of Alaska. This does not constitute an endorsement by NOAA.

References

  1. Abadie S, Morichon D, Grilli ST, Glockner S (2008) VOF/Navier-Stokes numerical modeling of surface waves generated by subaerial landslides. La Houille Blanche 1:21–26. doi: 10.1051/lhb:2008001 CrossRefGoogle Scholar
  2. Abadie S, Morichon D, Grilli ST, Glockner S (2010) Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model. Coast Eng 57:779–794. doi: 10.1016/j.coastaleng.2010.03.003 CrossRefGoogle Scholar
  3. Abadie S, Harris JC, Grilli ST, Fabre R (2012) Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. J Geophys Res 117:C05030. doi: 10.1029/2011JC007646 CrossRefGoogle Scholar
  4. Assier-Rzadkiewicz S, Mariotti C, Heinrich P (1997) Numerical simulation of submarine landslides and their hydraulic effects. J Waterw Port Coast Ocean Eng 123:149–157CrossRefGoogle Scholar
  5. Ataie-Ashtiani B, Najafi-Jilani A (2006) Prediction of submerged landslide generated waves in dam reservoirs: an applied approach. Dam Eng 17(3):135–155Google Scholar
  6. Ataie-Ashtiani B, Najafi-Jilani A (2007) A higher-order Boussinesq-type model with moving bottom boundary: applications to submarine landslide tsunami waves. Int J Numer Meth Fluid 53(6):1019–1048. doi: 10.1002/fld.1354 CrossRefGoogle Scholar
  7. Ataie-Ashtiani B, Nik-khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8(3):263–280. doi: 10.1007/s10652-008-9074-7 CrossRefGoogle Scholar
  8. Ataie-Ashtiani B, Najafi-Jilani A (2008) Laboratory investigations on impulsive waves caused by underwater landslide. Coast Eng 55(12):989–1004. doi: 10.1016/j.coastaleng.2008.03.003 CrossRefGoogle Scholar
  9. Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Intl J Num Meth Fluids 56(2):209–232CrossRefGoogle Scholar
  10. Barkan R, ten Brick US, Lin J (2009) Far field tsunami simulations of the 1755 Lisbon earthquake: implication for tsunami hazard to the US East Coast and the Caribbean. Mar Geol 264:109–122CrossRefGoogle Scholar
  11. Bouchut F, Fernández-Nieto ED, Mangeney A, Narbona-Reina G (2016) A two-phase two-layer model for fluidized granular flows with dilatancy effects. J Fluid Mech 801:166–221. doi: 10.1017/jfm.2016.417 CrossRefGoogle Scholar
  12. Chaytor J, ten Brink US, Solow J, Andrews BD (2009) Size distribution of submarine landslides along the U.S. Atlantic Margin. Mar Geol 264:16–27CrossRefGoogle Scholar
  13. Day SJ, Watts P, Grilli ST, Kirby JT (2005) Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Mar Geol 215:59–92. doi: 10.1016/j.margeo.2004.11.008 CrossRefGoogle Scholar
  14. Day SJ, Llanes P, Silver E, Hoffmann G, Ward SN, Driscoll N (2015) Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea. Mar Petrol Geol 67:419–438CrossRefGoogle Scholar
  15. De Blasio FV, Engvik L, Harbitz CB, Elverhøi A (2004) Hydroplaning and submarine debris flows. J Geophys Res 109. doi: 10.1029/2002JC001714 Google Scholar
  16. Eilers H (1941) Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration. Kolloid-Zeitschrift 97(3):313–321CrossRefGoogle Scholar
  17. Enet F, Grilli ST, Watts P (2003) Laboratory experiments for tsunamis generated by underwater landslides: comparison with numerical modeling. In Proceedings of 13th offshore and polar engineering conference (ISOPE03, Honolulu, USA, May 2003), pp 372–379Google Scholar
  18. Enet F, Grilli ST (2007) Experimental study of tsunami generation by three-dimensional Rigid underwater landslides. J Waterw Port Coast Ocean Eng 133(6):442–454CrossRefGoogle Scholar
  19. Fernández-Nieto ED, Bouchut F, Bresch D, Castro Diaz MJ, Mangeney A (2008) A new Savage-Hutter type model for submarine avalanches and generated tsunami. J Comp Phys 227:7720–7754CrossRefGoogle Scholar
  20. Fine IV, Rabinovich AB, Bornhold BD, Thomson R, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–57CrossRefGoogle Scholar
  21. Fine IV, Rabinovich AB, Kulikov EA et al (1998) Numerical modelling of landslide generated tsunamis with application to the Skagway Harbor tsunami of November 3, 1994. Proceedings of international conference on Tsunamis, Paris, pp 211–223Google Scholar
  22. Fritz HM, Hager WH, Minor H-E (2001) Lituya bay case: rock slide impact and wave runup. Sci Tsunami Hazards 19:3–22Google Scholar
  23. Fritz HM, Hager WH, Minor H-E (2004) Nearfield characteristics of landslide generated impulse waves. J Waterw Port Coast Ocean Eng 130:287–302CrossRefGoogle Scholar
  24. Fuhrman DR, Madsen PA (2009) Tsunami generation, propagation, and run-up with a high-order Boussinesq model. Coast Eng 56:747–758. doi: 10.1016/j.coastaleng.2009.02.004 CrossRefGoogle Scholar
  25. Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku, Japan earthquake. Earth Planets Space 63:815–820CrossRefGoogle Scholar
  26. Frankel NA, Acrivos A (1967) On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 22(847–853):1016. doi: 10.1016/0009-2509(67)80149-0 Google Scholar
  27. Fryer GJ, Watts Ph, Pratson LF (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218CrossRefGoogle Scholar
  28. Geist E, Lynett P, Chaytor J (2009) Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar Geol 264:41–52. doi: 10.1016/j.margeo.2008.09.005 CrossRefGoogle Scholar
  29. Glicken H (1996) Rockslide-Debris Avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. USGS Open-file Report 96-677, US Geological Survey, RestonGoogle Scholar
  30. Glimsdal S, Pedersen GK, Harbitz CB, Løvholt F (2013) Dispersion of tsunamis: does it really matter? Nat Hazards Earth Syst Sci 13:1507–1526. doi: 10.5194/nhess-13-1507-2013 CrossRefGoogle Scholar
  31. Grilli ST, Ioualalen M, Asavanant J, Shi F, Kirby JT, Watts P (2007) Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami. J Waterw Port Coast Ocean Eng 33:414–428CrossRefGoogle Scholar
  32. Grilli ST, Dias, F Guyenne, P Fochesato C and F Enet (2010a) Progress In fully nonlinear potential flow modeling of 3D extreme ocean waves. Chapter 3 in Advances in Numerical Simulation of Nonlinear Water Waves (ISBN: 978-981-283-649-6, edited by Q.W. Ma) (Vol. 11 in Series in Advances in Coastal and Ocean Engineering). World Scientific Publishing Co. Pte. Ltd., pp. 75–128Google Scholar
  33. Grilli ST, Dubosq S, Pophet N, Pérignon Y, Kirby JT, Shi F (2010) Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Nat Hazards Earth Syst Sci 10:2109–2125. doi: 10.5194/nhess-2109-2010 CrossRefGoogle Scholar
  34. Grilli ST, Harris JC, Tajalibakhsh T, Masterlark TL, Kyriakopoulos C, Kirby JT, Shi F (2013) Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure Appl Geophys 170:1333–1359. doi: 10.1007/s00024-012-0528-y CrossRefGoogle Scholar
  35. Grilli ST, O’Reilly C, Harris JC, Tajalli-Bakhsh T, Tehranirad B, Banihashemi S, Kirby JT, Baxter CDP, Eggeling T, Ma G, Shi F (2015a) Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City. MD Nat Hazards 76(2):705–746. doi: 10.1007/s11069-014-1522-8 CrossRefGoogle Scholar
  36. Grilli ST, Grilli AR, Tehranirad B and JT Kirby (2015b) Modeling tsunami sources and their propagation in the Atlantic Ocean for coastal tsunami hazard assessment and inundation mapping along the US East Coast. In Proceedings of 2015 COPRI solutions to coastal disasters conference, (Boston, USA. September 9–11, 2015), American Soc Civil Eng (in press)Google Scholar
  37. Grilli ST, Taylor O-DS, Baxter CDP, Maretzki S (2009) Probabilistic approach for determining submarine landslide tsunami hazard along the upper East Coast of the United States. Mar Geol 264(1–2):74–97CrossRefGoogle Scholar
  38. Grilli ST, Vogelmann S, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26(4):301–313CrossRefGoogle Scholar
  39. Grilli ST, Watts P (1999) Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Eng Anal Bound Elem 23:645–656CrossRefGoogle Scholar
  40. Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure, I: modeling, experimental validation, and sensitivity analyses. J Waterw Port Coast Ocean Eng 131(6):283–297CrossRefGoogle Scholar
  41. Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21CrossRefGoogle Scholar
  42. Harbitz C, Pedersen G, Gjevik B (1993) Numerical simulations of large water waves due to landslides. J Hydraul Eng 119:1325–1342CrossRefGoogle Scholar
  43. Heinrich P (1992) Nonlinear water waves generated by submarine and aerial landslides. J Waterw Port Coast Ocean Eng 118:249–266CrossRefGoogle Scholar
  44. Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coastal Ocean Eng. 136:145155CrossRefGoogle Scholar
  45. Horrillo J, Wood A, Kim GB, Parambath A (2013) A simplified 3-D Navier–Stokes numerical model for landslide-tsunami: application to the Gulf of Mexico. J Geophys Res 118:6934–6950. doi: 10.1002/2012JC008689 CrossRefGoogle Scholar
  46. Hungr O, Evans SG, Bovis MJ, Hutchinson JF (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238CrossRefGoogle Scholar
  47. Imran J, Parker G, Locat J, Lee H (2001) 1D numerical model of muddy subaqueous and subaerial debris flow. J Hyd Eng ASCE 127(11):959–968CrossRefGoogle Scholar
  48. Ioualalen M, Asavanant J, Kaewbanjak N, Grilli ST, Kirby JT, Watts P (2007) Modeling the 26th December 2004 Indian Ocean tsunami: case study of impact in Thailand. J Geophys Res 112:C07024. doi: 10.1029/2006JC003850 CrossRefGoogle Scholar
  49. Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J Geophys Res 106:537–552CrossRefGoogle Scholar
  50. Jiang L, LeBlond PH (1992) The coupling of a submarine slide and the surface waves which it generates. J Geophys Res 97(C8):12731–12744CrossRefGoogle Scholar
  51. Jiang L, Leblond PH (1993) Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates. J Geophys Res 98:10303–310317CrossRefGoogle Scholar
  52. Kirby JT, Shi F, Tehranirad B, Harris JC, Grilli ST (2013) Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Modell 62:39–55. doi: 10.1016/j.ocemod.2012.11.009 CrossRefGoogle Scholar
  53. Kirby JT, Shi F, Nicolsky D, Misra S (2016) The 27 April 1975 Kitimat, British Columbia submarine landslide tsunami: a comparison of modeling approaches. Landslides 2016: doi: 10.1007/s10346-016-0682-x (published online Feb. 26)
  54. Liu PL-F, Wu T-R, Raichlen F, Synolakis CE, Borrero JC (2005) Runup and rundown generated by three-dimensional masses. J Fluid Mech 536:107–144CrossRefGoogle Scholar
  55. Locat J, Lee H, ten Brink US, Twichell D, Geist E, Sansoucy M (2009) Geomorphology, stability and mobility of the Currituck slide. Mar Geol 264:28–40CrossRefGoogle Scholar
  56. Løvholt F, Pedersen G, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res 113:C09026CrossRefGoogle Scholar
  57. Lynett P, Liu PL-F (2002) A numerical study of submarine landslide generated waves and runup. Proc R Soc Lond A458:2885–2910CrossRefGoogle Scholar
  58. Lynett P, Liu PL-F (2005) A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res 110:C03006. doi: 10.1029/2004JC002443 CrossRefGoogle Scholar
  59. Ma G, Shi F, Kirby JT (2012) Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model 43–44:22–35CrossRefGoogle Scholar
  60. Ma G, Kirby JT, Shi F (2013) Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Model 69:146–165CrossRefGoogle Scholar
  61. Ma G, Kirby JT, Hsu TJ, Shi F (2015) A two-layer granular landslide model for tsunami wave generation: theory and computation. Ocean Model 93:40–55CrossRefGoogle Scholar
  62. Maeno F, Imamura F (2011) Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. J Geophys Res 116(B9)Google Scholar
  63. McFall BC, Fritz HM (2016) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proc R Soc Lond A 472(2188):20160052CrossRefGoogle Scholar
  64. McMurtry GM, Tappin DR, Sedwick PN, Wilkinson I, Fietzke J, Sellwood B (2007) Elevated marine deposits in Bermuda record a late quaternary megatsunami. Sediment Geol 200(3–4):155–165. doi: 10.1016/j.sedgeo.2006.10.009 CrossRefGoogle Scholar
  65. Mendoza CI, Santamara-Holek I (2009) The rheology of hard sphere suspensions at arbitrary volume fractions: an improved differential viscosity model. J Chem Phys 130(4):044904. doi: 10.1063/1.3063120 CrossRefGoogle Scholar
  66. Mohammed F, Fritz HM (2012) Physical modeling of tsunami generated by three-dimensional deformable granular landslides. J Geophys Res 117:C11015CrossRefGoogle Scholar
  67. Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94:17,465–17,484CrossRefGoogle Scholar
  68. Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Proc R Soc Lond A466(2116):1201–1228. doi: 10.1098/rspa.2009.0445 CrossRefGoogle Scholar
  69. Murty TS (1979) Submarine slide-generated water waves in Kitimat Inlet, British Columbia. J Geophys Res 84(C12):7,777–7,77CrossRefGoogle Scholar
  70. Najafi-Jilani A, Ataie-Ashtiani B (2008) Estimation of near-field characteristics of tsunami generation by submarine landslide. Ocean Eng 35(5–6):545–557. doi: 10.1016/j.oceaneng.2007.11.006 CrossRefGoogle Scholar
  71. Okada Y (1985) Surface deformation due to shear and tensile faults in a half space. Bull Seismol Soc Am 75(4):1135–1154Google Scholar
  72. Piper DJW, Cochonat P, Morrison ML (1999) The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of the debris flows and turbidity current inferred from side scan sonar. Sedimentology 46:79–97CrossRefGoogle Scholar
  73. Prior DP, Doyle EH, Neurauter T (1986) The Currituck Slide, Mid Atlantic continental slope-revisited. Mar Geol 73:25–45CrossRefGoogle Scholar
  74. Quemada D (1977) Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol Acta 16:82–94. doi: 10.1007/BF01516932 CrossRefGoogle Scholar
  75. Ramalho RS, Winckler G, Madeira J, Helffrich GR, Hiplito A, Quartau R, Adena K, Schaefer JM (2015) Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci Adv 1(9):e1500456CrossRefGoogle Scholar
  76. Romano F, Piatanesi A, Lorito S, D’Agostino N, Hirata K, Atzori S, Yamazaki Y, Cocco M (2012) Clues from joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquake. Sci Rep 2:385. doi: 10.1038/srep00385 CrossRefGoogle Scholar
  77. Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am 103:14731492CrossRefGoogle Scholar
  78. Schnyder JSD, Eberli GP, Kirby JT, Shi F, Tehranirad B, Mulder T, Ducassou E, Hebbeln d, Wintersteller P (2016) Tsunamis caused by submarine slope failures along western Great Bahama Bank. Sci Rep (Nature) 6:35925. doi: 10.1038/srep35925 CrossRefGoogle Scholar
  79. Shelby M, Grilli ST, Grilli AR (2016) Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami tide simulations. Pure Appl Geophys. doi: 10.1007/s00024-016-1315-y Google Scholar
  80. Shi F, Kirby JT, Harris JC, Geiman JD, Grilli ST (2012) A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model 43–44:36–51. doi: 10.1016/j.ocemod.2011.12.004 CrossRefGoogle Scholar
  81. Song C, Wang P, Makse HA (2008) A phase diagram for jammed matter. Nature 453(7195):629632. doi: 10.1038/nature06981 CrossRefGoogle Scholar
  82. Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998-offshore evidence on the source mechanism. Mar Geol 175:1–23CrossRefGoogle Scholar
  83. Tappin DR, Watts P, Grilli ST (2008) The Papua New Guinea tsunami of 1998: anatomy of a catastrophic event. Nat Hazards Earth Syst Sci 8:243–266CrossRefGoogle Scholar
  84. Tappin DR, Grilli ST, Harris JC, Geller RJ, Masterlark T, Kirby JT, Shi F, Ma G, Thingbaijamg KKS, Maig PM (2014) Did a submarine landslide contribute to the 2011 Tohoku tsunami ? Mar Geol 357:344–361. doi: 10.1016/j.margeo.2014.09.043 CrossRefGoogle Scholar
  85. Tehranirad B, Harris JC, Grilli AR, Grilli ST, Abadie S, Kirby JT, Shi F (2015) Far-field tsunami hazard in the north Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. Pure Appl Geophys 172(12):3,589–3,616. doi: 10.1007/s00024-015-1135-5 CrossRefGoogle Scholar
  86. ten Brink U, Twichell D, Geist E, Chaytor J, Locat J, Lee H, Buczkowski B, Barkan R, Solow A, Andrews B, Parsons T, Lynett P, Lin J, and M Sansoucy (2008) Evaluation of tsunami sources with the potential to impact the U.S. Atlantic and Gulf coasts. USGS Administrative report to the U.S. Nuclear Regulatory CommissionGoogle Scholar
  87. ten Brink US, Lee HJ, Geist EL, Twichell D (2009a) Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes. Mar Geol 264:65–73CrossRefGoogle Scholar
  88. ten Brink US, Barkan R, Andrews BD, Chaytor JD (2009b) Size distributions and failure initiation of submarine and subaerial landslides. Earth Planet Sci Lett 287:31–42CrossRefGoogle Scholar
  89. ten Brink US, Chaytor JD, Geist EL, Brothers DS, Andrews BD (2014) Assessment of tsunami hazard to the U.S. Atlantic margin. Mar Geol 353:31–54CrossRefGoogle Scholar
  90. Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30th December 2002 landslide-induced tsunami in Stromboli: sequence of the events reconstructed from eyewitness accounts. Nat Hazards Earth Syst Sci 5:763–775CrossRefGoogle Scholar
  91. Twichell DC, Chaytor JB, ten Brink US, Buczkowski (2009) Morphology of late quaternary submarine landslides along the U.S. Atlantic Continental Margin. Mar Geol 264:4–15CrossRefGoogle Scholar
  92. Viesca RC, Rice JR (2010) Modeling slope instability as shear rupture propagation in a saturated porous medium. In: Mosher DC, Shipp C, Moscardelli L, Chaytor J, Baxter C, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences IV. Springer, Heidelberg, pp 215–225Google Scholar
  93. Viesca RC, Rice JR (2012) Nucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure. J Geophys Res. doi: 10.1029/2011JB008866 Google Scholar
  94. Von Huene R, Kirby S, Miller J, Dartnell P (2014) The destructive 1946 Unimak near? Field tsunami: new evidence for a submarine slide source from reprocessed marine geophysical data. Geophys Res Lett 41(19):6811–6818CrossRefGoogle Scholar
  95. Viroulet S, Cébron D, Kimmoun O, Kharif C (2013) Shallow water waves generated by subaerial solid landslides. Geophys J Intl 193(2):747–762CrossRefGoogle Scholar
  96. Viroulet S, Sauret A, Kimmoun O (2014) Tsunami generated by granular collapse down a rough inclined plane. Eur Phys Lett. doi: 10.1209/0295-5075/105/34004 Google Scholar
  97. Ward SN, Day S (2001) Cumbre Vieja VolcanoPotential collapse and tsunami at La Palma, Canary Islands. Geophys Res Lett 28:3397–3400. doi: 10.1029/2001GL013110 CrossRefGoogle Scholar
  98. Ward SN, Day S (2003) Ritter Island volcanolateral collapse and the tsunami of 1888. Geophys J Int 154(3):891–902CrossRefGoogle Scholar
  99. Watts P and ST Grilli (2003) Underwater landslide shape, motion, deformation, and tsunami generation. In: Proc 13th ISOPE, Honolulu, pp 364–371Google Scholar
  100. Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazards Earth Syst Sci 3:391–402CrossRefGoogle Scholar
  101. Watts P, Grilli ST, Tappin DR, Fryer G (2005) Tsunami generation by submarine mass failure, II: predictive equations and case studies. J Waterw Port Coast Ocean Eng 131(6):298–310CrossRefGoogle Scholar
  102. Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for free surface waves. Part I: highly nonlinear unsteady waves. J Fluid Mech 294:71–92CrossRefGoogle Scholar
  103. Wei Y, Newman A, Hayes G, Titov V, Tang L (2014) Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic or GPS Data: application to the Tohoku 2011 tsunami. Pure Appl Geophys 171(12):3281–3305CrossRefGoogle Scholar
  104. Weiss R, Fritz HM, Wünnemann K (2009) Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century. Geophys Res Lett. doi: 10.1029/2009GL037814 Google Scholar
  105. WRAPUP-2 (2011) Japan quake’s economic impact worse than first feared. Reuters, published/accessed 14 April 2011. http://www.reuters.com/article/japan-economy-idUSL3E7FC09220110412
  106. Yavari-Ramshe S, Ataie-Ashtiani B (2015) A rigorous finite volume model to simulate subaerial and submarine landslide generated waves. Landslides. doi: 10.1007/s10346-015-0662-6 Google Scholar
  107. Yavari-Ramshe S, B Ataie-Ashtiani (2016) Numerical simulation of subaerial and submarine landslide generated tsunami waves - Recent advances and future challenges. Landslides, 44 pps., doi:10.1007/s10346-016-0734-2 (published online 8/3/16)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Ocean EngineeringUniversity of Rhode IslandNarragansettUSA
  2. 2.IRPHE Ecole Centrale de MarseilleMarseilleFrance
  3. 3.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA
  4. 4.Department of Civil and Environmental EngineeringOld Dominion UniversityNorfolkUSA
  5. 5.Department of Civil Engineering, Center for Applied Coastal ResearchUniversity of DelawareNewarkUSA

Personalised recommendations