Advertisement

Natural Hazards

, Volume 85, Issue 3, pp 1489–1510 | Cite as

Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps

  • Marj Tonini
  • Mário Gonzalez Pereira
  • Joana Parente
  • Carmen Vega Orozco
Original Paper

Abstract

The spatial and temporal distribution of forest fires displays a complex pattern which strongly influences the forest landscape and the neighbouring anthropogenic development. Statistical methods developed for spatio-temporal stochastic point processes can be employed to find a structure, detect over-densities and trends in forest fire risk and address towards prevention and forecasting measures. The present study considers the Portuguese mapped burnt areas official geodatabase resulting from interpreted satellite measurements, covering the period 1990–2013. The main goal is to detect whether space and time act independently or whether, conversely, neighbouring events are also closer in time, interacting to generate clusters. To this purpose, the following statistical methods were applied: (1) the geographically weighted summary statistics, to explore how the average burned area vary locally through the investigated region; (2) the bivariate K-function, to test the space–time interaction and the spatial attraction/independency between fires of different size; and (3) the space–time kernel density, allowing elaborating smoothed density surfaces and representing over-densities of large versus medium versus small fires and on north versus south region. The proposed approach successfully allowed finding and mapping spatio-temporal patterns within this large data series. Specifically, medium fires tend to aggregate around small fires, while large fires aggregate at a larger distance and longer times, indicating that the return time following these events is longer than for small and medium fires. The density maps shows that hot spots are present almost each year in the northern region, with a higher concentration in the northern areas, while the southern half of the country counts lower surface densities of fires, which are mainly concentrated in the central period (2000–2007).

Keywords

Forest fires Portugal Spatio-temporal statistics Ripley’s K-function 3D-Kernel density 

Notes

Acknowledgements

This work was supported by: (1) European Investment Funds by FEDER/COMPETE/POCI–Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958; (2)the Herbette Foundation of the University of Lausanne; (3) the project Interact-Integrative Research in Environment, Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, co-financed by FEDER/NORTE 2020; and (4) National Funds by FCT—Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing fire data.

Supplementary material

11069_2016_2637_MOESM1_ESM.avi (178.2 mb)
Supplementary material 1 (AVI 182447 kb)

References

  1. Acevedo P, Quirós-Fernández F, Casal J, Vicente J (2014) Spatial distribution of wild boar population abundance: basic information for spatial epidemiology and wildlife management. Ecol Ind 36:594–600. doi: 10.1016/j.ecolind.2013.09.019 CrossRefGoogle Scholar
  2. Altman N, Léger C (1995) Bandwidth selection for kernel distribution function estimation. J Stat Plan Inference 46:195–214CrossRefGoogle Scholar
  3. Amraoui M, Pereira MG, Dacamara CC, Calado TJ (2015) Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region. Sci Total Environ 524:32–39CrossRefGoogle Scholar
  4. Bai S-B, Wang J, Lü G-N, Zhou P-G, Hou S-S, Xu S-N (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian Segment in the Three Gorges area, China. Geomorphology 115:23–31CrossRefGoogle Scholar
  5. Bashtannyk DM, Hyndman RJ (2001) Bandwidth selection for kernel conditional density estimation. Comput Stat Data Anal. 36:279–298CrossRefGoogle Scholar
  6. Bermudez PDZ, Mendes J, Pereira J, Turkman K, Vasconcelos M (2009) Spatial and temporal extremes of wildfire sizes in portugal (1984–2004). Int J Wildland Fire 18:983–991CrossRefGoogle Scholar
  7. Besag J (1977) Contribution to the discussion of Dr. Ripley‘s paper. J R Stat Soc B 39:193–195Google Scholar
  8. Brunsdon C (1995) Estimating probability surfaces for geographical point data: an adaptive kernel algorithm. Comput Geosci 21:877–894CrossRefGoogle Scholar
  9. Brunsdon C, Fotheringham A, Charlton M (2002) Geographically weighted summary statistics—a framework for localised exploratory data analysis. Comput Environ Urban Syst 26:501–524CrossRefGoogle Scholar
  10. Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445. doi: 10.1002/esp.3290160505 CrossRefGoogle Scholar
  11. Conoscenti C, di Maggio C, Rotigliano E (2008) GIS analysis to assess landslide susceptibility in a fluvial basin oF NW Sicily (Italy). Geomorphology 94:325–339CrossRefGoogle Scholar
  12. Console R, Murru M, Lombardi AM (2003) Refining earthquake clustering models. J Geophys Res Solid Earth 1978–2012:108Google Scholar
  13. Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes. Springer, New YorkGoogle Scholar
  14. Dieterich J (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering. J Geophys Res-All Ser 99:2601–2618CrossRefGoogle Scholar
  15. Diggle PJ (2003) Statistical analysis of spatial point patterns. Hodder Education Publishers, LondonGoogle Scholar
  16. Erener A, Düzgün H (2012) Landslide susceptibility assessment: What are the effects of mapping unit and mapping method? Environ Earth Sci 66:859–877CrossRefGoogle Scholar
  17. Finney MA (2005) The challenge of quantitative risk analysis for wildland fire. For Ecol Manag 211:97–108. doi: 10.1016/j.foreco.2005.02.010 CrossRefGoogle Scholar
  18. Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, ChichesterGoogle Scholar
  19. Fuentes-Santos I, Marey-Pérez M, González-Manteiga W (2013) Forest fire spatial pattern analysis in Galicia (NW Spain). J Environ Manag 128:30–42CrossRefGoogle Scholar
  20. Garavand S, Yaralli N, Sadeghi H (2013) Spatial pattern and mapping fire risk occurrence at natural lands of Lorestan province. Iran J For Poplar Res 21:231–242Google Scholar
  21. Genton MG, Butry DT, Gumpertz ML, Prestemon JP (2006) Spatio-temporal analysis of wildfire ignitions in the St Johns River water management district, Florida. Int J Wildland Fire 15:87–97CrossRefGoogle Scholar
  22. Gitzen RA, Millspaugh JJ, Kernohan BJ (2006) Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J Wildl Manag 70:1334–1344CrossRefGoogle Scholar
  23. Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2013) GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models. arxiv preprint arXiv:13060413
  24. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi: 10.1016/S0169-555X(99)00078-1 CrossRefGoogle Scholar
  25. Hering AS, Bell CL, Genton MG (2009) Modeling spatio-temporal wildfire ignition point patterns. Environ Ecol Stat 16:225–250CrossRefGoogle Scholar
  26. Jenks GF, Caspall FC (1971) Error on choroplethic maps: definition, measurement, reduction. Ann As Am Geogr 61:217–244CrossRefGoogle Scholar
  27. Koutsias N, Kalabokidis KD, Allgöwer B (2004) Fire occurrence patterns at landscape level: beyond positional accuracy of ignition points with kernel density estimation methods. Natl Resour Model 17:359–375CrossRefGoogle Scholar
  28. Koutsias N, Martínez-Fernández J, Allgöwer B (2010) Do factors causing wildfires vary in space? Evidence from geographically weighted regression. GISci Remote Sens 47:221–240CrossRefGoogle Scholar
  29. Koutsias N, Allgöwer B, Kalabokidis K, Mallinis G, Balatsos P, Goldammer JG (2015) Fire occurrence zoning from local to global scale in the European Mediterranean basin: implications for multi-scale fire management and policy. iFor-Biogeosci For 9:195CrossRefGoogle Scholar
  30. Lee S, Ryu J-H, Kim I-S (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides 4:327–338CrossRefGoogle Scholar
  31. Leone V, Koutsias N, Martínez J, Vega-García C, Allgöwer B, Lovreglio R (2003) The human factor in fire danger assessment wildland fire danger estimation and mapping the role of remote sensing data. World Scientific Publishing, SingaporeGoogle Scholar
  32. Lu B, Harris P, Charlton M, Brunsdon C (2014) The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Inf Sci 17:85–101CrossRefGoogle Scholar
  33. Martínez-Fernández J, Chuvieco E, Koutsias N (2013) Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Natl Hazards Earth Syst Sci 13:311–327CrossRefGoogle Scholar
  34. Mendes JM, de Zea Bermudez PC, Pereira J, Turkman K, Vasconcelos M (2010) Spatial extremes of wildfire sizes: bayesian hierarchical models for extremes. Environ Ecol Stat 17:1–28CrossRefGoogle Scholar
  35. Middendorp RS, Vlam M, Rebel KT, Baker PJ, Bunyavejchewin S, Zuidema PA (2013) Disturbance history of a seasonal tropical forest in western thailand: a spatial dendroecological analysis. Biotropica 45:578–586CrossRefGoogle Scholar
  36. Minnich RA (1983) Fire mosaics in southern California and northern Baja California. Science 219:1287–1294CrossRefGoogle Scholar
  37. Nakaya T, Yano K (2010) Visualising crime clusters in a space-time cube: an exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Trans GIS 14:223–239CrossRefGoogle Scholar
  38. Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20CrossRefGoogle Scholar
  39. NMBA (2016) National mapping burnt areas. PortugalGoogle Scholar
  40. Oh H-J, Lee S (2011) Landslide susceptibility mapping on Panaon island, Philippines using a geographic information system. Environ Earth Sci 62:935–951CrossRefGoogle Scholar
  41. Orozco CV, Tonini M, Conedera M, Kanveski M (2012) Cluster recognition in spatial-temporal sequences: the case of forest fires. Geoinformatica 16:653–673CrossRefGoogle Scholar
  42. Páez A, Uchida T, Miyamoto K (2002a) A general framework for estimation and inference of geographically weighted regression models: 1. Location-specific kernel bandwidths and a test for locational heterogeneity. Environ Plan A 34:733–754. doi: 10.1068/a34110 CrossRefGoogle Scholar
  43. Páez A, Uchida T, Miyamoto K (2002b) A general framework for estimation and inference of geographically weighted regression models: 2. Spatial association and model specification tests. Environ Plan A 34:883–904. doi: 10.1068/a34133 CrossRefGoogle Scholar
  44. Parajuli J, Haynes KE (2015) The earthquake impact on telecommunications infrastructure in Nepal: a preliminary spatial assessment. GMU school of policy, government, & international affairs research paperGoogle Scholar
  45. Pereira MG, Trigo RM, da Camara CC, Pereira JM, Leite SM (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agric For Meteorol 129:11–25CrossRefGoogle Scholar
  46. Pereira MG, Calado TJ, Dacamara CC, Calheiros T (2013) Effects of regional climate change on rural fires in Portugal. Clim Change 57:187–200Google Scholar
  47. Pereira MG, Aranha J, Amraoui M (2014) Land cover fire proneness in Europe. For Syst 2014(23):13. doi: 10.5424/fs/2014233-06115 Google Scholar
  48. Pereira MG, Caramelo L, Orozco CV, Costa R, Tonini M (2015) Space-time clustering analysis performance of an aggregated dataset: the case of wildfires in Portugal. Environ Model Softw 72:239–249. doi: 10.1016/J.ENVSOFT.2015.05.016 CrossRefGoogle Scholar
  49. Piñol J, Beven K, Viegas DX (2005) Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. Ecol Model 183:397–409CrossRefGoogle Scholar
  50. R Core Team (2015) R: a language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing; 2013 document freely available on the internet at: http://www.r-projectorg
  51. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B (Methodol) 39:172–212Google Scholar
  52. Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Quart J Eng Geol Hydrogeol 38:363–375. doi: 10.1144/1470-9236/05-008 CrossRefGoogle Scholar
  53. Rosser N, Lim M, Petley D, Dunning S, Allison R (2007) Patterns of precursory rockfall prior to slope failure. J Geophys Res Earth Surf. doi: 10.1029/2006jf000642
  54. Rowlingson B, Diggle P, Bivand MR (2012) Package ‘splancs’. Gen 14:1Google Scholar
  55. Salis M, Ager AA, Finney MA, Arca B, Spano D (2014) Analyzing spatiotemporal changes in wildfire regime and exposure across a Mediterranean fire-prone area. Natl Hazards 71:1389–1418CrossRefGoogle Scholar
  56. Sartori M, Baillifard F, Jaboyedoff M, Rouiller J-D (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland). Natl Hazards Earth Syst Sci 3:423–433. doi: 10.5194/nhess-3-423-2003 CrossRefGoogle Scholar
  57. Schmuck G et al (2014) Forest fires in Europe, middle east and north Africa 2013. Publications Office, LuxembourgGoogle Scholar
  58. Schoenberg FP (2003) Multidimensional residual analysis of point process models for earthquake occurrences. J Am Stat Assoc 98:789–795CrossRefGoogle Scholar
  59. Scotto MG et al (2014) Area burned in Portugal over recent decades: an extreme value analysis. Int J Wildland Fire 23:812–824CrossRefGoogle Scholar
  60. Silverman BW (1986a) Density estimation for statistics and data analysis. Monographs on statistics and applied probability. Chapman and Hall, LondonGoogle Scholar
  61. Silverman BW (1986b) Density estimation for statistics and data analysis, vol 26. CRC Press, Boca RotonCrossRefGoogle Scholar
  62. Sousa PM, Trigo RM, Pereira MG, Bedia J, Gutiérrez JM (2015) Different approaches to model future burnt area in the Iberian Peninsula. Agric For Meteorol 202:11–25CrossRefGoogle Scholar
  63. Telesca L, Pereira M (2010) Time-clustering investigation of fire temporal fluctuations in Portugal. Natl Hazards Earth Syst Sci 10:661–666CrossRefGoogle Scholar
  64. Tonini M, Pedrazzini A, Penna I, Jaboyedoff M (2013) Spatial pattern of landslides in Swiss Rhone Valley. Natl Hazards. doi: 10.1007/s11069-012-0522-9 Google Scholar
  65. Trigo RM, Pereira J, Pereira MG, Mota B, Calado TJ, Dacamara CC, Santo FE (2006) Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int J Climatol 26:1741–1757CrossRefGoogle Scholar
  66. Trigo RM, Sousa PM, Pereira MG, Rasilla D, Gouveia CM (2013) Modelling wildfire activity in iberia with different atmospheric circulation weather types. Int J Climatol 36:2761–2778. doi: 10.1002/joc.3749 CrossRefGoogle Scholar
  67. Turnbull B, Iwano E, Burnett W, Howe H, Clark L (1990) Monitoring for clusters of disease: application to leukemia incidence in upstate New York. Am J Epidemiol 132:S136–S143Google Scholar
  68. van den Eeckhaut M, Poesen J, Gullentops F, Vandekerckhove L, Hervás J (2011) Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders. Quat Res 75:721–733. doi: 10.1016/J.yqres.2011.02.006 CrossRefGoogle Scholar
  69. Wiegand K, Saltz D, Ward D (2006) A patch-dynamics approach to savanna dynamics and woody plant encroachment—insights from an arid savanna. Perspect Plant Ecol Evol Syst 7:229–242. doi: 10.1016/J.PPEES.2005.10.001 CrossRefGoogle Scholar
  70. Zhao K, Popescu S, Meng X, Pang Y, Agca M (2011) Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sens Environ 115:1978–1996. doi: 10.1016/j.rse.2011.04.001 CrossRefGoogle Scholar
  71. Zuo R, Agterberg FP, Cheng Q, Yao L (2009) Fractal characterization of the spatial distribution of geological point processes. Int J Appl Earth Obs Geoinform 11:394–402. doi: 10.1016/j.jag.2009.07.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Earth Surface Dynamics (IDYST)University of LausanneLausanneSwitzerland
  2. 2.Centre for Research and Technology of Agro-Environment and Biological Sciences, CITABUniversity of Trás-os-Montes and Alto Douro, UTADVila RealPortugal

Personalised recommendations