Advertisement

Natural Hazards

, Volume 85, Issue 2, pp 649–667 | Cite as

The impact of extra-tropical transitioning on storm surge and waves in catastrophe risk modelling: application to the Japanese coastline

  • Nicolas BruneauEmail author
  • Juergen Grieser
  • Thomas Loridan
  • Enrica Bellone
  • Shree Khare
Original Paper

Abstract

Catastrophe risk models are used to assess and manage the economic and societal impacts of natural perils such as tropical cyclones. Large ensembles of event simulations are required to generate useful model output. For example, to estimate the risk due to wind-driven storm surge and waves in tropical cyclone risk models, computationally efficient parametric representations of the wind forcing are required to enable the generation of large ensembles. This paper presents new results on the impact of including explicit representations of extra-tropical transitioning in parametric wind models used to force storm surge and wave simulations in a catastrophe risk modelling context. Extra-tropical transitioning is particularly important in modelling risk on the Japanese coastline, as roughly 40 % of typhoons hitting the Japanese mainland are transitioning before landfall. Using both a historical and idealized track set, we compare maximum storm surge and wave footprints along the Japanese coastline for models that include, and do not include, explicit representations of extra-tropical transitioning. We find that the inclusion of extra-tropical transitioning leads to lower storm surge (10–20 %) and waves (5–15 %) on the southern Japanese coast, with significantly higher storm surge and waves along the northern coast (25–50 %). The results of this paper demonstrate that useful risk assessment of coastal flood risk in Japan must consider the extra-tropical transitioning process.

Keywords

Tropical cyclone Typhoon Transitioning Storm Surge Waves Catastrophe modelling Japan 

References

  1. Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, Held IM (2010) Modeled impact of anthropogenic warming on the frequency of intense atlantic hurricanes. Science 327:454–458CrossRefGoogle Scholar
  2. Burston J, Nose T, Tomlinson R (2013) Real-time numerical simulation of storm surge inundation using high-performance computing for disaster management, Queensland. In: Proceeding of the 20th international congress on modelling and simulation, Adelaide, Australia, pp 2047–2053Google Scholar
  3. Chen WB, Liu WC, Hsu MH (2012) Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model. Nat Hazards Earth Syst Sci. doi: 10.5194/nhess-12-3799-2012
  4. DHI Mike 21, FM Mike 3 Flow Model (2013) Hydrodynamic and transport module scientific documentation. DHIGoogle Scholar
  5. Dietrich J, Zijlema M, Westerink J, Holthuijsen L, Dawson C Jr, Jr RL, Jensen R, Smith J, Stelling G, Stone G (2011) Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Eng 58:45–65. doi: 10.1016/j.coastaleng.2010.08.001 CrossRefGoogle Scholar
  6. Dietsche D, Hagen SC, Bacopoulos P (2007) Storm surge simulations for hurricane hugo (1989): on the significance of inundation areas. J Waterw Port Coast Ocean Eng 133(3):183–191. doi: 10.1061/(AS)0733-950X CrossRefGoogle Scholar
  7. Emanuel K, Ravela S, Vivant E, Risi C (2006) A statistical deterministic approach to hurricane risk assessment. Bull Am Meteorol Soc 19:299–314. doi: 10.1175/BAMS-87-3-299 CrossRefGoogle Scholar
  8. Fujibe F, Kitabatake N (2007) Classification of surface wind fields of tropical cyclones at landfall on the japan main islands. J Meteorol Soc Jpn 85:747–765CrossRefGoogle Scholar
  9. Haigh I, Wijeratne E, MacPherson L, Pattiaratchi C, Mason M, Crompton R, George S (2014b) Estimating present day extreme water level exceedance probabilities around the coastline of Australia: Tides, extra-tropical storm surges and mean sea level. Clim Dyn 42(1–2):121–138. doi: 10.1007/s00382-012-1652-1 CrossRefGoogle Scholar
  10. Haigh I, MacPherson L, Mason M, Wijeratne E, Pattiaratchi C, Crompton R, George S (2014a) Estimating present day extreme water level exceedance probabilities around the coastline of Australia: Tropical cyclone-induced storm surges. Clim Dyn 42(1–2):139–157. doi: 10.1007/s00382-012-1653-0 CrossRefGoogle Scholar
  11. Harper B, Kepert JD, Ginger JD (2010) Guidelines for converting between various wind averaging periods in tropical cyclone conditions. Tech. Rep. WMO/TD-No. 1555, World Meteorological OrganizationGoogle Scholar
  12. Hinrichsen D (1998) The coastal population explosion. In: Trends and future challenges for U.S. National Ocean and Coastal policy: proceeding of a workshop, Washington D.C., pp 27–29Google Scholar
  13. Holland G (1980) An analytic model of the wind and pressure profiles in hurricanes. Mon Weather Rev 108:1212–1218CrossRefGoogle Scholar
  14. Holland G (2008) A revised hurricane pressure-wind model. Mon Weather Rev 136:3432–3445CrossRefGoogle Scholar
  15. Japan Meteorological Agency, Typhoon statistics, http://www.data.jma.go.jp/fcd/yoho/typhoon/statistics/index.html
  16. Jones SC, Harr PA, Abraham J, Bosart LF, Bowyer PJ, Evans JL, Hanley DE, Hanstrum BN, Hart RE, Lalaurette F, Sinclair MR, Smith RK, Thorncroft C (2003) The extratropical transition of tropical cyclones: forecast challenges, current understanding, and future directions. Weather Forecast 18:1052–1092CrossRefGoogle Scholar
  17. Karaca E, Aslani H (2016) Review of two Japan Typhoon catastrophe models for commercial and industrial properties. Nat Hazards 83:19–40. doi: 10.1007/s11069-016-2340-y CrossRefGoogle Scholar
  18. Kawai H, Hashimoto N, Matsuura K (2008) Estimation of extreme storm water level in japanese bays by using stochastic typhoon model and tide observation data. In: Proceedings of the 18th international offshore and polar engineering conference, Vancouver, CanadaGoogle Scholar
  19. Kawai H, Hashimoto N, Yamashiro M, Yasuda T (2010) Uncertainty of extreme storm surge estimation by high wind sea surface drag coefficient and future typhoon change. In: Proceedings of the 32th international conference on coastal engineering, ASCE, Shangai, ChinaGoogle Scholar
  20. Kitabatake N (2011) Climatology of extratropical transition of tropical cyclones in the western north pacific defined by using cyclone phase space. J Meteorol Soc Jpn 89(4):309–325. doi: 10.2151/jmsj.2011-402 CrossRefGoogle Scholar
  21. Kitabatake N, Fujibe F (2009) Relationship between surface wind fields and three-dimensional structures of tropical cyclones landfalling in the main islands of japan. J Meteorol Soc Jpn 87(6):959–977. doi: 10.2151/jmsj.87.959 CrossRefGoogle Scholar
  22. Knaff J, Zehr R (2007) Reexamination of tropical cyclone wind-pressure relationships. Weather Forecast 22(1):71–88. doi: 10.1175/WAF965.1 CrossRefGoogle Scholar
  23. Knapp K, Kruk M, Levinson D, Diamond H, Neumann C (2010) The international best track archive for climate stewardship (IBTrACS). Bull Am Meteorol Soc 91(3):363–376. doi: 10.1175/2009BAMS2755.1 CrossRefGoogle Scholar
  24. Lewis M, Bates P, Horsburgh K, Neal K, Schumann G (2013) A storm surge inundation model of the northern Bay of Bengal using publicly available data. Q. J. R. Meteorol. Soc. 139:358–369. doi: 10.1002/qj.2040 CrossRefGoogle Scholar
  25. Lewis M, Horsburgh K, Bates P (2014) Bay of Bengal cyclone extreme water level estimate uncertainty. Nat Hazards 72(2):983–996. doi: 10.1007/s11069-014-1046-2 CrossRefGoogle Scholar
  26. Lin N, Emanuel KA, Smith JA, Vanmarcke E (2010) Risk assessment of hurricane storm surge for New York City. J Geophys Res 115:D18121. doi: 10.1029/2009JD013630 CrossRefGoogle Scholar
  27. Lin N, Lane P, Emanuel KA, Sullivan RM, Donnelly JP (2014) Heightened hurricane surge risk in northwest Florida revealed from climatological-hydrodynamic modeling and paleorecord reconstruction. J Geophys Res Atmos 119:8606–8623. doi: 10.1002/2014JD021584 CrossRefGoogle Scholar
  28. Lin N, Chavas D (2012) On hurricane parametric wind and applications in storm surge modeling. J Geophys Res Atmos. doi: 10.1029/2011JD017126
  29. Liu B, Liu H, Xie L, Guan C, Zhao D (2011) A coupled atmosphere-wave-ocean modeling system: simulation of the intensity of an idealized tropical cyclone. Mon Weather Rev 139:132–152. doi: 10.5194/nhess-12-3799-2012 CrossRefGoogle Scholar
  30. Liu H, Liu B, Xie L, Zhang K (2012) Simulation of ocean responses to an idealized landfalling tropical cyclone using a coupled atmosphere-wave-ocean modeling system. Trop Cyclone Res Rev 1(3):373–389Google Scholar
  31. Loridan T, Khare S, Scherer E, Dixon M, Bellone E (2015) Parametric modeling of transitioning cyclone’s wind fields for risk assessment studies in the western north pacific. J Appl Meteorol Climatol 54:624–642. doi: 10.1175/JAMC-D-14-0095.1
  32. Loridan T, Scherer E, Dixon M, Bellone E, Khare S (2014) Cyclone wind field asymmetries during extratropical transition in the western north pacific. J Appl Meteorol Climatol 53(2):421–428. doi: 10.1175/JAMC-D-13-0257.1
  33. Muir-Wood R, Drayton M, Berger A, Burgess P, Wright T (2005) Catastrophe loss modelling of storm-surge flood risk in eastern England. Philos Trans R Soc A 363:1407–1422. doi: 10.1098/rsta.2005.1575 CrossRefGoogle Scholar
  34. NASA Earth Observatory (2012) Comparing the winds of Sandy and Katrina. http://earthobservatory.nasa.gov/IOTD/view.php?id=79626l
  35. Oh SM, Moon IJ (2013) Typhoon and storm surge intensity changes in a warming climate around the Korean peninsula. Nat Hazards 66:1405. doi: 10.1007/s11069-012-0422-z CrossRefGoogle Scholar
  36. Phadke AC, Martino CD, Fai Cheung K, Houston SH (2003) Modeling of tropical cyclone winds and waves for emergency management. Ocean Eng 30:553–578CrossRefGoogle Scholar
  37. Powell M, Soukup G, Cocke S, Gulati S, Morisseau-Leroy N, Hamid S, Dorst N, Axe L (2005) State of Florida hurricane loss projection model: atmospheric science component. J Wind Eng Ind Aerodyn 93:651–674CrossRefGoogle Scholar
  38. Rego J, Li C (2010) Storm surge propagation in Galveston Bay during hurricane Ike. J Mar Syst 82:265–279CrossRefGoogle Scholar
  39. Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang HM, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Van Den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds R, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057. doi: 10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  40. Smith AB, Matthews JL (2015) Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates. Nat Hazards 77(3):1829–1851. doi: 10.1007/s11069-015-1678-x. www.ncdc.noaa.gov/billions/events
  41. Sousounis PJ (2010) Insured loss estimation from wind and storm surge for a re-occurrence of typhoon vera. In: 29th conference on hurricanes and tropical meteorologyGoogle Scholar
  42. Vickery PJ, Masters FJ, Powell MD, Wadhera D (2009) Hurricane hazard modeling: the past, present, and future. J Wind Eng Ind Aerodyn 97:392–405. doi: 10.1016/j.jweia.2009.05.005 CrossRefGoogle Scholar
  43. Vickery P, Wadhera D (2008) Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*wind data. J Appl Meteorol Climatol 47(10):2497–2517. doi: 10.1175/2008JAMC1837.1 CrossRefGoogle Scholar
  44. Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a coupled ocean-atmosphere-wave-sediment transport (coawst) modeling system. Ocean Model 35(3):230–244. doi: 10.1016/j.ocemod.2010.07.010 CrossRefGoogle Scholar
  45. Willoughby HE, Darling RWR, Rahn ME (2006) Parametric representation of the primary hurricane vortex. Part 2: a family of sectionally continuous profiles. Mon Weather Rev 134:1102–1120CrossRefGoogle Scholar
  46. Yasuda T, Mase H, Mori N (2010) Projection of future typhoons landing on japan based on a stochastic typhoon model utilizing agcm projections. Hydrol Res Lett 4:65–69. doi: 10.3178/HRL.4.65 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Nicolas Bruneau
    • 1
    • 2
    Email author
  • Juergen Grieser
    • 1
  • Thomas Loridan
    • 1
    • 3
  • Enrica Bellone
    • 1
  • Shree Khare
    • 1
  1. 1.Risk Management Solutions LtdLondonUK
  2. 2.Department of PhysicsImperial College LondonLondonUK
  3. 3.Risk FrontiersMacquarie UniversityNSWAustralia

Personalised recommendations