Natural Hazards

, Volume 84, Issue 3, pp 1661–1684 | Cite as

A comparison of observed and predicted ground motions from the 2015 MW7.8 Gorkha, Nepal, earthquake

  • Susan E. HoughEmail author
  • Stacey S. Martin
  • Vineet Gahalaut
  • Anand Joshi
  • M. Landes
  • R. Bossu
Original Paper


We use 21 strong motion recordings from Nepal and India for the 25 April 2015 moment magnitude (MW) 7.8 Gorkha, Nepal, earthquake together with the extensive macroseismic intensity data set presented by Martin et al. (Seism Res Lett 87:957–962, 2015) to analyse the distribution of ground motions at near-field and regional distances. We show that the data are consistent with the instrumental peak ground acceleration (PGA) versus macroseismic intensity relationship developed by Worden et al. (Bull Seism Soc Am 102:204–221, 2012), and use this relationship to estimate peak ground acceleration from intensities (PGAEMS). For nearest-fault distances (RRUP < 200 km), PGAEMS is consistent with the Atkinson and Boore (Bull Seism Soc Am 93:1703–1729, 2003) subduction zone ground motion prediction equation (GMPE). At greater distances (RRUP > 200 km), instrumental PGA values are consistent with this GMPE, while PGAEMS is systematically higher. We suggest the latter reflects a duration effect whereby effects of weak shaking are enhanced by long-duration and/or long-period ground motions from a large event at regional distances. We use PGAEMS values within 200 km to investigate the variability of high-frequency ground motions using the Atkinson and Boore (Bull Seism Soc Am 93:1703–1729, 2003) GMPE as a baseline. Across the near-field region, PGAEMS is higher by a factor of 2.0–2.5 towards the northern, down-dip edge of the rupture compared to the near-field region nearer to the southern, up-dip edge of the rupture. Inferred deamplification in the deepest part of the Kathmandu valley supports the conclusion that former lake-bed sediments experienced a pervasive nonlinear response during the mainshock (Dixit et al. in Seismol Res Lett 86(6):1533–1539, 2015; Rajaure et al. in Tectonophysics, 2016. Ground motions were significantly amplified in the southern Gangetic basin, but were relatively low in the northern basin. The overall distribution of ground motions and damage during the Gorkha earthquake thus reflects a combination of complex source, path, and site effects. We also present a macroseismic intensity data set and analysis of ground motions for the MW7.3 Dolakha aftershock on 12 May 2015, which we compare to the Gorkha mainshock and conclude was likely a high stress-drop event.


Gorkha Nepal Earthquake Ground motions 



We are thankful for helpful conversations with Pablo Ampuero, Domniki Asimaki, Aron Meltzner, and Sudhir Rajaure, to Eric Thompson for providing predicted PGA values for the BSSA14 GMPE, to Gail Atkinson for providing predicted PGA values for the Ghofrani and Atkinson (2014) GMPE, and to Christina Widiwijayanti for providing us a copy of Ohsumi et al. (2016). We are further grateful to Aron Meltzner and Bruce Worden for constructive reviews of an earlier version of this manuscript, and to two anonymous reviewers for their constructive reviews. SEH was supported by the Office of US Foreign Disaster Assistance (OFDA), a branch of the US Agency for International Development (USAID). SSM was supported by Kerry Sieh through the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative. This work comprises Earth Observatory of Singapore contribution no. 116.

Supplementary material

11069_2016_2505_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1329 kb)


  1. Ambraseys NN, Bilham R (2003a) Reevaluated intensities for the great Assam earthquake of 12 June 1897, Shillong, India. Bull Seism Soc Am 93(2):655–673. doi: 10.1785/0120020093 CrossRefGoogle Scholar
  2. Ambraseys NN, Bilham R (2003b) Earthquakes and associated deformation in northern baluchistan 1892–2001. Bull Seism Soc Am 93(2):1573–1605. doi: 10.1785/0120020038 CrossRefGoogle Scholar
  3. Ambraseys N, Douglas JJ (2004) Magnitude calibration of north Indian earthquakes. Geophys J Int 159(1):165–206. doi: 10.1111/j.1365-246X.2004.02323.x CrossRefGoogle Scholar
  4. Ampuero J-P, Hough SE, Meng L, Thompson EM, Zhang A, Martin SS, Asimaki D, Inbal A (2016) Damage limited by the distribution of high-frequency radiation in the 2015 Gorkha, Nepal, Earthquake (in review)Google Scholar
  5. Atkinson GM, Boore DM (2003) Empirical ground-motion relations for subduction zone earthquakes and their application to Cascadia and other regions. Bull Seism Soc Am 93:1703–1729. doi: 10.1785/0120020156 CrossRefGoogle Scholar
  6. Avouac J-P, Meng L, Wei S, Wang T, Ampuero J-P (2015) Unzipping lower edge of locked Main Himalayan thrust during the 2015, Mw7.8 Gorkha earthquake. Nat Geosci 8:708–711. doi: 10.1038/ngeo2518 CrossRefGoogle Scholar
  7. Bakun WH, Wentworth CM (1997) Estimating earthquake location and magnitude from seismic intensity data. Bull Seism Soc Am 87:1502–1521Google Scholar
  8. Bhattarai M, Adhikari LB, Gautam UP, Laurendeau A, Labonne C, Hoste-Colomer R, Sebe O, Hernandez B (2015) Overview of the large 25 April 2015 Gorkha, Nepal, earthquake from accelerometric perspectives. Seismol Res Lett 86:1540–1548. doi: 10.1785/0220150140 CrossRefGoogle Scholar
  9. Bilham R (1999) Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquakes. Curr Sci 69(2):155–187Google Scholar
  10. Bollinger L, Sapkota SN, Tapponnier P, Klinger Y, Rizza M, Van Der Woerd J, Tiwari DR, Pandey R, Bitri A, Bes de Berc S (2014) Estimating the return times of great Himalayan earthquakes in eastern Nepal: evidence from the Patu and Bardibas strands of the main frontal thrust. J Geophys Res 119:7123–7163. doi: 10.1002/2014JB010970 CrossRefGoogle Scholar
  11. Bollinger L, Tapponnier P, Sapkota SN, Klinger Y (2016) Slip deficit in central Nepal: omen for a repeat of the 1344 AD earthquake? Earth Planet Sp 68:12. doi: 10.1186/s40623-016-0389-1 CrossRefGoogle Scholar
  12. Boore DM (1983) Stochastic simulation of high-frequency ground motions based on seismological models of radiated spectra. Bull Seism Soc Am. 73:1865–1894Google Scholar
  13. Boore DM, Stewart JP, Seyhan E, Atksinson GM (2014) Nga-west2 equations for predicting pga, pgv, and 5% damped psa for shallow crustal earthquakes. Earthq Spectr 30(3):1057–1085CrossRefGoogle Scholar
  14. Bossu R, Landès R, Roussel F, Steed R, Mazet-Roux R, Martin SS, Hough SE (2016) Thumbnail-based questionnaires for the rapid and efficient collection of macroseismic data from global earthquakes. Seism Res Lett (in review)Google Scholar
  15. Caprio M, Tarigan B, Worden CB, Wiemer S, Wald DJ (2015) Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency. Bull Seism Soc Am. 106:2. doi: 10.1785/0120140286 Google Scholar
  16. Chadha RK, Srinagesh D, Srinivas D, Suresh G, Sateesh A, Singh SK, Pérez-Campos X, Suresh G, Koketsu K, Masuda T, Domen K, Ito T (2015) CIGN, a strong motion seismic network in central indo-gangetic plains, foothills of Himalayas: first results. Seismol Res Lett 87:37–46. doi: 10.1785/0220150106 CrossRefGoogle Scholar
  17. Chaulagain H, Rodrigues H, Silva V, SPacone E, Varum H (2015) Seismic risk assessment and hazard mapping in Nepal. Nat Hazards 78(1):583–602CrossRefGoogle Scholar
  18. Chen, J. et al. (1982). 西藏地震史料汇编: 公元642年–1980年 (A collection of material on earthquakes in Tibet: 642–1980), 西藏自治区科学技术委员会, 西藏人民出版社, 1, 39–76, LhasaGoogle Scholar
  19. Dixit AM, Ringler A, Sumy D, Cochran E, Hough SE, Martin SS, Gibbons S, Luetgert J, Galetzka J, Shrestha SN, Rajaure S, McNamara D (2015) Strong motion recordings of the M7.8 Gorkha, Nepal, earthquake sequence from low-cost, Quake Catcher Network accelerometers. Seismol Res Lett 86(6):1533–1539. doi: 10.1785/0220150146 CrossRefGoogle Scholar
  20. Galetzka J, Melgar D, Genrich JF, Geng J, Owen S, Lindsey EO, Xu X, Bock Y, Avouac J-P, Adhikari L-B, Upreti BN, Pratt-Sitaula B, Bhattarai TN, Sitaula B, Moore A, Hudnut KW, Szeliga W, Normandeau J, Fend M, Flouzat M, Bollinger L, Shreshta P, Koirala B, Gautam U, Bhatterai M, Gupta R, Kandel T, Timsina C, Sapkota SN, Rajaure S, Maharjan N (2015) Slip pulse and resonance of Kathmandu basin during the 2015 Mw7.8 Gorkha earthquake, Nepal, imaged with space geodesy. Science 349:1091–1095. doi: 10.1126/science.aac6383 CrossRefGoogle Scholar
  21. Ghofrani H, Atkinson GM (2014) Ground-motion prediction equations for interface earthquakes of M7 to 9 in Japan based on empirical data. Bull Earthq Eng 12:549–571. doi: 10.1007/s10518-013-9533-5 CrossRefGoogle Scholar
  22. Gomberg J, Bodin P, Reasenberg P (2003) Observing earthquakes triggered in the near field by dynamic deformations. Bull Seism Soc Am 93:118–138. doi: 10.1785/0120020075 CrossRefGoogle Scholar
  23. Grünthal G (ed) (1998) The European Macroseismic Scale EMS-98, vol 15. Conseil de l’Europe, Cahiers du Centre Europeén de Geodynamique et de Seismoligie, Luxembourg, p 101Google Scholar
  24. Hanks TC, Johnston AC (1992) Common features of the excitation and propagation of strong ground motion for North American earthquakes. Bull Seism Soc Am 82:1–23Google Scholar
  25. Hashash YMA, Tiwari B, Moss RES, Asimaki D, Clahan KB, Kieffer DS, Dreger DS, McDonald A, Madugo CM, Mason HB, Pehlivan M, Rayamajhi D, Acharya I, Adhikari B (2015) Geotechnical field reconnaissance: Gorkha (Nepal) earthquake of April 25, 2015 and related shaking sequence. Geotechnical extreme event reconnaissance GEER Association Report No. GEER-040, 1Google Scholar
  26. Hauksson E, Felzer K, Given D, Giveon M, Hough SE, Hutton K, Kanamori H, Sevilgen V, Wei S, Yong A (2008) Preliminary report on the 29 July 2008 Mw 5.4 Chino Hills, eastern Los Angeles basin, California, earthquake sequence. Seismol Res Lett 79:855–866. doi: 10.1785/gssrl.79.6.85 CrossRefGoogle Scholar
  27. Hossler T, Bollinger L, Sapkota SN, Lavé J, Gupta RM, Kandel TP (2016) Surface ruptures of large Himalayan earthquakes in western Nepal: evidence along are activated strand of the main boundary thrust, Earth Planet Sci Lett 187–196. doi: 10.1016/j.epsl.2015.11.042
  28. Hough SE (2012) Initial assessment of the intensity distribution of the 2011 Mw5.8 Mineral, Virginia, earthquake. Seismol Res Lett 83(4):649–657. doi: 10.1785/0220110140 CrossRefGoogle Scholar
  29. Hough SE (2014) Shaking from injection-induced earthquakes in the central and eastern United States. Bull Seism Soc Am 104:2767–2781. doi: 10.1785/0120120285 CrossRefGoogle Scholar
  30. Hough SE (2015) Introduction to the focus section on the 2015 Gorkha, Nepal, Earthquake. Seismol Res Lett 86:1502–1505. doi: 10.1785/0220150212 CrossRefGoogle Scholar
  31. Hough SE, Bilham R (2008) Site response of the Ganges basin inferred from re-evaluated macroseismic observations from the 1897 Shillong, 1905 Kangra, and 1934 Nepal earthquakes. J Earth Syst Sci 117:773–782. doi: 10.1007/s12040-008-0068-0 CrossRefGoogle Scholar
  32. Hough SE, Pande P (2007) The 1868 Hayward fault, California, earthquake: implications for earthquake scaling relations on partially creeping faults. Bull Seism Soc Am 97:638–645. doi: 10.1785/0120060072 CrossRefGoogle Scholar
  33. Iyengar RN (1999) Earthquakes in ancient India. Curr Sci 77(6):827–829Google Scholar
  34. Karakaş C, Tapponnier P, Sapkota SN, Klinger Y, Coudurier-Curveur A, Ildefonso S, Gao M, Bollinger L (2015) High resolution topography and multiple seismic uplift on the main frontal thrust near the ratu river, eastern Nepal, In: Asia-Oceania geophysical society annual meeting, Abstract SE17-D5-PM2-P-006Google Scholar
  35. Kumar A, Mittal H, Sachdeva R, Kumar A (2015) Indian strong motion instrumentation network. Seism Res Lett 83:59–66. doi: 10.1785/gssrl.83.1.59 CrossRefGoogle Scholar
  36. Lavé J, Yule D, Sapkota S, Basant K, Madden C, Attal M, Pandey R (2005) Evidence for a great Medieval earthquake (~ 1100 A.D.) in the central Himalayas, Nepal. Science 307(5713):1302–1305. doi: 10.1126/science.1104804 CrossRefGoogle Scholar
  37. Lindsey EO, Natsuaki R, Xu X, Shimada M, Hashimoto M, Melgar D, Sandwell DT (2015) Line-of-sight displacement from ALOS-2 interferometry: Mw7.8 Gorkha earthquake and Mw7.3 aftershock. Geophys Res Lett 42(16):6655–6661. doi: 10.1002/2015GL065385 CrossRefGoogle Scholar
  38. Martin S, Hough SE (2015) The 2014 Bay of Bengal earthquake: macroseismic data reveals a high-stress drop event. Seism Res Lett 86(2A):369–377. doi: 10.1785/0220140155 CrossRefGoogle Scholar
  39. Martin SS, Hough SE (2016) Reply to, “Comment on ‘Ground Motions from the 2015 Mw 7.8 Gorkha, Nepal, Earthquake Constrained by a Detailed Assessment of Macroseismic Data’ by Stacey Martin, Susan E. Hough and Charleen Hung” by Andrea Tertulliani, Laura Graziani, Corrado Castellano, Alessandra Maramai, Antonio Rossi. Seism Res Lett 87:957–962. doi: 10.1785/0220160061 CrossRefGoogle Scholar
  40. Martin S, Kakar DM (2012) The 19 January 2011 Mw 7.2 Dalbandin earthquake, Balochistan. Bull Seism Soc Am 100(4):1810–1819. doi: 10.1785/0120110221 CrossRefGoogle Scholar
  41. Martin S, Szeliga W (2010) A catalog of felt intensity data for 589 earthquakes in India, 1636–2009. Bull Seism Soc Am 100(2):536–569. doi: 10.1785/0120080328 CrossRefGoogle Scholar
  42. Martin S, Hough SE, Hung C (2015) Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake constrained by a detailed assessment of macroseismic data. Seism Res Lett 86:1524–1532. doi: 10.1785/0220150138 CrossRefGoogle Scholar
  43. Medvedev SV, Sponheuer W, Kárník V (1965) Шкaлa Ceйcмичecкoй Интeнcивнocти MSK 1964 (Seismic Intensity Scale Version MSK 1964, in Russian). Kom., Moscow, AkademiiNauk SSSR Geofiz, p 280Google Scholar
  44. Meltzner AJ, Wald DJ (1998) Foreshocks and aftershocks of the great 1857 California earthquakes, U.S. Geological Survey Open File Report, 1998—465, pp 111–112Google Scholar
  45. Meltzner AJ, Wald DJ (2002) Felt reports and intensity assignments for aftershocks and triggered events of the great 1906 California earthquake, U.S. Geological Survey Open File Report, 2002–37, p 299Google Scholar
  46. Meng L, Zhang A, Yagi Y (2016) Improving back-projecting imaging with a novel physics-based aftershock calibration approach: a case study of the 2015 Gorkha earthquake. Geophys Res Lett 43(2):628–636. doi: 10.1002/2015GL067034
  47. Mitra S, Paul H, Kumar A, Singh SK, Dey S, Powali D (2015) The 25 April 2015 Nepal earthquake and its aftershocks. Curr Sci 108(10):1938–1943Google Scholar
  48. Mugnier JL, Gajurel AP, Huyghe P, Becel D (2005) Frontal and piggy-back seismic ruptures in the external thrust belt of Western Nepal. J Asian Earth Sci 25(5):707–717. doi: 10.1016/j.jseaes.2004.05.009 CrossRefGoogle Scholar
  49. Murphy MA, Taylor MH, Goss J, Silver CRP, Whipp DM, Beaumont C (2014) Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal. Nat Geosci 7:38–42. doi: 10.1038/ngeo2017 CrossRefGoogle Scholar
  50. Musson R (1998) Intensity assignments from historical earthquake data: issues of certainty and quality. Annali di Geofsica 41(1):79–91Google Scholar
  51. Musson RMW, Grunthal G, Stucchi M (2010) The comparison of macroseismic intensity scales. J Seismol 14:413–428. doi: 10.1007/s10950-009-9172-0 CrossRefGoogle Scholar
  52. Ohsumi T, Hiroshi I, Inoue H, Aoi S, Fujiwara H (2016) Investigation of damage in and around Kathmandu Valley related to the 2015 Gorkha, Nepal earthquake. In: Technical note of the national research institute for earth science and disaster prevention, 404Google Scholar
  53. Oldham T (1883) A catalogue of Indian earthquakes from the earliest time to the end of A.D. 1869. Memoir Geol Sur India 29:163–215Google Scholar
  54. Pande P, Kayal JR (eds.) (2003) Kutch (Bhuj) earthquake 26 January 2001. Geological survey of India, Special Publication 76, LucknowGoogle Scholar
  55. Paudyal YR, Yatabe R, Bhandary N, Dahal R (2012) A study of local amplification effect of soil layers on ground motion in the Kathmandu valley using microtremor analysis. Earthq Eng Eng Vib 11(2):257–268CrossRefGoogle Scholar
  56. Prakash R, Singh RK, Srivastava HN (2016) Nepal earthquake 25 April 2015: source parameters, precursory pattern and hazard assessment. Geomat Nat Hazard Risk. doi: 10.1080/19475705.2016.1155504 Google Scholar
  57. Rajaure S, Asimaki D, Thompson EM, Hough S, Martin S, Ampuero JP, Inbal A, Dhital MR, Paudel L (2016) Strong motion observations of the Kathmandu valley response during the M7.8 Gorkha earthquake sequence, in review. TectonophysicsGoogle Scholar
  58. Sapkota SN, Bollinger L, Klinger Y, Tapponier P, Gaudemer Y, Tiwari D (2013) Primary surface rupture of the great Himalayan earthquakes of 1255 and 1934. Nat Geosci 6:71–76. doi: 10.1038/ngeo1669 CrossRefGoogle Scholar
  59. Singh SK, Mena E, Castro R (1988) Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from strong motion data. Bull Seism Soc Am 78(2):451–477Google Scholar
  60. Smith-Baird R (1844) Memoir on Indian earthquakes. J Asiat Soc Bengal 12:257–293Google Scholar
  61. Szeliga W, Hough SE, Martin S, Bilham R (2010) Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull Seism Soc Am 100:570–584. doi: 10.1785/0120080329 CrossRefGoogle Scholar
  62. Takai N, Shigefuji M, Rajaure S, Bijukchhen S, Ichiyanagi M, Dhital MR, Sasatani T (2016) Strong ground motion in the Kathmandu valley during the 2015 Gorkha, Nepal, earthquake. Earth Planet Sp 68:1. doi: 10.1186/s40623-016-0383-7 CrossRefGoogle Scholar
  63. Tertulliani A, Graziani L, Castellano C, Maramai A, Rossi A (2016) Comment on ‘Ground Motions from the 2015 Mw 7.8 Gorkha, Nepal, Earthquake Constrained by a Detailed Assessment of Macroseismic Data’ by Stacey Martin, Susan E. Hough and Charleen Hung. Seism Res Lett. doi: 10.1785/0220150258 Google Scholar
  64. Toppozada TR, Real CR (1981) Preparation of isoseismal maps and summaries of Reported Effects for pre-1900 California earthquakes. U.S. Geological Survey Open File Report, 1981–262, p 7–11Google Scholar
  65. Udhoji et al. (2000). Jabalpur earthquake 22 May 1997–a geoscientific study, Special Publication 51, Geological Survey of India, Government of India, 2000Google Scholar
  66. Wald DJ, Quitoriano V, Dengler L, Dewey JW (1999) Utilization of the internet for rapid community intensity maps. Seism Res Lett 70(6):680–697. doi: 10.1785/gssrl.70.6.680 CrossRefGoogle Scholar
  67. Worden CB, Wald DJ, Lin K, Cua G, Garcia D (2010) A revised ground-motion and intensity interpolation scheme for shakemap. Bull Seism Soc Am 100:3083–3096. doi: 10.1785/0120100101 CrossRefGoogle Scholar
  68. Worden CB, Gerstenberger MC, Rhoades DA, Wald DJ (2012) Probabilistic relationships between ground-motion parameters and modified Mercalli intensity in California. Bull Seism Soc Am 102:204–221. doi: 10.1785/0120110156 CrossRefGoogle Scholar
  69. Zuccaro G, Cacace F, de Gregorio D (2012) Buildings inventory for seismic vulnerability assessment on the basis of Census data assessment at national and regional scale, 15WCEE, LisbonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2016

Authors and Affiliations

  • Susan E. Hough
    • 1
    Email author
  • Stacey S. Martin
    • 2
  • Vineet Gahalaut
    • 3
  • Anand Joshi
    • 4
  • M. Landes
    • 5
  • R. Bossu
    • 5
  1. 1.United States Geological Survey (USGS)PasadenaUSA
  2. 2.Earth Observatory of Singapore (EOS)Nanyang Technological UniversitySingaporeSingapore
  3. 3.National Centre for Seismology (NCS), DelhiMinistry of Earth SciencesNew DelhiIndia
  4. 4.Department of Earth SciencesIndian Institute of Technology (IIT) RoorkeeRoorkeeIndia
  5. 5.European-Mediterranean Seismic Centrec/o Commissariat à l’Energie Atomique Centre DAM Ile de FranceArpajon CEDEXFrance

Personalised recommendations