Advertisement

Natural Hazards

, Volume 84, Supplement 2, pp 529–540 | Cite as

About compact equations for water waves

  • A. I. Dyachenko
  • D. I. Kachulin
  • V. E. Zakharov
Original Paper

Abstract

A simple compact equation for gravity water waves, which includes a nonlinear wave term and advection term, is derived. Numerical simulations in the framework of this equation demonstrate an initial stage of freak wave breaking.

Keywords

Nonlinear water waves Hamiltonian formalism Modulational instability Freak waves Breather 

Notes

Acknowledgments

This work was supported by Grant “Wave turbulence: theory, numerical simulation, experiment” #14-22-00174 of Russian Science Foundation.

References

  1. Crawford DE, Yuen HG, Saffman PG (1980) Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion 2:1CrossRefGoogle Scholar
  2. Dyachenko AI, Zakharov VE (1994) Is free-surface hydrodynamics an integrable system? Phys Lett A 190:144–148CrossRefGoogle Scholar
  3. Dyachenko AI, Zakharov VE (2011) Compact equation for gravity waves on deep water. JETP Lett 93(12):701–705CrossRefGoogle Scholar
  4. Dyachenko AI, Zakharov VE (2012) A dynamic equation for water waves in one horizontal dimension. Eur J Mech B 32:17–21CrossRefGoogle Scholar
  5. Dyachenko AI, Zakharov VE, Kachulin DI (2012) Collision of two breathers at surface of deep water, Arxiv: 1201.4808
  6. Dyachenko AI, Kachulin DI, Zakharov VE (2013a) Collisions of two breathers at the surface of deep water. Nat Hazards Earth Syst Sci 13:3205–3210CrossRefGoogle Scholar
  7. Dyachenko AI, Kachulin DI, Zakharov VE (2013b) On the nonintegrability of the free surface hydrodynamics. JETP Lett 98(1):43–47CrossRefGoogle Scholar
  8. Dyachenko AI, Kachulin DI, Zakharov VE (2016) Freak-waves: compact equation versus fully nonlinear one. In: Pelinovsky E, Kharif C (eds) Extreme ocean waves, 2nd edn. Springer, Berlin, pp 23–44CrossRefGoogle Scholar
  9. Fedele F, Dutykh D (2012a) Special solutions to a compact equation for deep-water gravity waves. J Fluid Mech 712:646–660CrossRefGoogle Scholar
  10. Fedele F, Dutykh D (2012b) Solitary wave interaction in a compact equation for deep-water gravity waves. JETP Lett 95(12):622–625CrossRefGoogle Scholar
  11. Krasitskii VP (1990) Canonical transformation in a theory of weakly nonlinear waves with a nondecay dispersion law. Sov Phys JETP 98:1644–1655Google Scholar
  12. Zakharov VE (1968) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J Appl Mech Tech Phys 9(2):190–194CrossRefGoogle Scholar
  13. Zakharov VE, Lvov VS, Falkovich G (1992) Kolmogorov spectra of turbulence I. Springer-Verlag, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. I. Dyachenko
    • 1
    • 2
  • D. I. Kachulin
    • 2
  • V. E. Zakharov
    • 1
    • 2
    • 3
    • 4
  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Novosibirsk State UniversityNovosibirsk-90Russia
  3. 3.Department of MathematicsUniversity of ArizonaTucsonUSA
  4. 4.Physical Institute of RASMoscowRussia

Personalised recommendations