Advertisement

Natural Hazards

, Volume 83, Supplement 1, pp 97–116 | Cite as

Investigation of ionospheric TEC precursors related to the M7.8 Nepal and M8.3 Chile earthquakes in 2015 based on spectral and statistical analysis

  • Christina OikonomouEmail author
  • Haris Haralambous
  • Buldan Muslim
Original Paper

Abstract

Ionospheric total electron content (TEC) variations prior to 2 large earthquakes in Nepal (M = 7.8) and Chile (M = 8.3) in 2015 were analyzed using measurements from global navigation satellite system network with the aim to detect possible ionospheric anomalies associated to these seismic events and describe their main features, by applying statistical and spectral analysis. It was shown that abnormal TEC variations appeared few days up to few hours before the events lasting up to 8 h, whereas intensified TEC wave-like oscillations with periods 20 and 2–5 min were also identified that could be linked to the impending earthquakes. An unusual modification of the equatorial ionospheric anomaly 5 days before the main shock was also detected. Spectral analysis on TEC satellite measurements proved an effective method for the discrimination between seismically induced ionospheric waves and those of different origin such as the solar terminator transition and geomagnetic storms.

Keywords

Ionospheric earthquake precursors Total electron content (TEC) Spectral analysis Equatorial anomaly Solar terminator 

Notes

Acknowledgments

This paper is funded by the project investigation of earthquake signatures on the ionosphere over Europe-ΔΙΑΚΡΑΤΙΚΕΣ/ΚY-ΡΟY/0713/37which is co-financed by the Republic of Cyprus and the European Regional Development Fund (through the ΔΕΣΜΗ 2009–2010 of the Cyprus Research Promotion Foundation).

References

  1. Afraimovich EL (2008) First GPS-TEC evidence for the wave structure excited by the solar terminator. Earth Planets Space 60(8):895–900CrossRefGoogle Scholar
  2. Afraimovich EL, Astafieva EI, Gokhberg MB, Lapshin VM, Permyakova VE, Steblov GM, Shalimov SL (2004) Variations of the total electron content in the ionosphere from GPS data recorded during the Hector Mine earthquake of October 16, 1999 California. Russ J Earth Sci 6(5):339–354CrossRefGoogle Scholar
  3. Afraimovich EL, Edemskiy IK, Voeykov SV, Yasyukevich YV, Zhivetiev IV (2009a) The first GPS-TEC imaging of the space structure of MS wave packets excited by the solar terminator. Ann Geophys 27(4):1521–1525CrossRefGoogle Scholar
  4. Afraimovich EL, Edemskiy IK, Voeykov SV, Yasyukevich YV, Zhivetiev IV (2009b) Spatio-temporal structure of the wave packets generated by the solar terminator. Adv Space Res 44(7):824–835CrossRefGoogle Scholar
  5. Carter B, Kellerman A, Kane T, Dyson P, Norman R, Zhang R (2013) Ionospheric precursors to large earthquakes: a case study of the 2011 Japanese Tohoku earthquake. J Atmos Sol Terr Phys 102:290–297CrossRefGoogle Scholar
  6. Ciraolo L (1993) Evaluation of GPS L2-L1 biases and related daily TEC profiles. In: Proceedings of the GPS/ionosphere workshop, Neustrelitz, pp 90–97Google Scholar
  7. Contadakis ME, Arabelos DN, Pikridas C, Spatalas SD (2012) Total electron content variations over southern Europe before and during the M 6.3 Abruzzo earthquake of April 6, 2009. Ann Geophys. doi: 10.4401/ag-5322 Google Scholar
  8. Dautermann T, Calais E, Haase J, Garrison J (2007) Investigation of ionospheric electron content variations before earthquakes in southern California, 2003–2004. J Geophys Res. doi: 10.1029/2006JB004447 Google Scholar
  9. Devi M, Medhi A, Sarma AJDS, Barbara AK (2013) Growth and inhibition of equatorial anomaly prior to an earthquake (EQ): case studies with total electron content (TEC) data for major EQs of Japan 2011 and Indonesia 2012. Positioning 4:240–252CrossRefGoogle Scholar
  10. Dobrovolsky IR, Zubkov SI, Myachkin VI (1979) Estimation of the size of earthquake preparation zones. Pageoph 117:1025–1044CrossRefGoogle Scholar
  11. Gao Y, Liu ZZ (2002) Precise ionosphere modeling using regional GPS network data. J Global POS Syst 1(3):18–24CrossRefGoogle Scholar
  12. He LM, Wu LX, Pulinets SA, Liu SJ, Yang F (2012) A nonlinear background removal method for seismo-ionospheric anomaly analysis under a complex solar activity scenario: a case study of the M9.0 Tohoku earthquake. Adv Space Res 50:211–220CrossRefGoogle Scholar
  13. He LM, Wu LX, De Santis A, Liu SJ, Yang Y (2014) Is there a one-to-one correspondence between ionospheric anomalies and large earthquakes along Longmenshan faults? Ann Geophys 32(2):187–196CrossRefGoogle Scholar
  14. Hines CO (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38(8):1441–1481CrossRefGoogle Scholar
  15. Hocke K, Schlegel K (1996) A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann Geophys 14:917–940. doi: 10.1007/s00585-996-0917-6 Google Scholar
  16. Hunsucker RD (1982) Atmospheric gravity waves generated in the high latitude ionosphere: a review. Rev Geophys Space Phys 20:293–315CrossRefGoogle Scholar
  17. Karpov IV, Bessarab FS (2008) Model studying the effect of the solar terminator on the thermospheric parameters. Geomagn Aeron 48:209–219CrossRefGoogle Scholar
  18. Kafatos M, Ouzounov D, Pulinets S, Cervone G, Sing, R (2007). Energies associated with the Sumatra earthquakes of December 26, 2004 and March 28, 2005, AGU 2007 fall meeting, San Francisco, paper S42B-04Google Scholar
  19. Klimenko MV, Klimenko VV, Zakharenkova IE, Pulinets SA, Zhao B, Tsidilina MN (2011) Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Adv Space Res 48(3):488–499CrossRefGoogle Scholar
  20. Klotz S, Johnson NL (1983) Encyclopedia of statistical sciences. Wiley, New JerseyGoogle Scholar
  21. Korsunova LP, Khegai VV (2006) Medium-term ionospheric precursors to strong earthquakes. Int J Geomagn Aeron. doi: 10.1029/2005GI000122 Google Scholar
  22. Laštovička J (2006) Forcing of the ionosphere by waves from below. J Atmos Sol Terr Phys 68(3):479–497Google Scholar
  23. Li J, Meng G, Wang M, Liao H, Shen X (2009) Investigation of ionospheric TEC changes related to the 2008 Wenchuan earthquake based on statistic analysis and signal detection. Earthq Sci 22(5):545–553CrossRefGoogle Scholar
  24. Liu JY, Chen YI, Chuo YJ, Tsai HF (2001) Variations of ionospheric total electron content during the Chi–Chi earthquake. Geophys Res Lett 28:1381–1386Google Scholar
  25. Liu JY, Chen YI, Chuo YJ, Chen CS (2006) A statistical investigation of pre-earthquake ionospheric anomaly. J Geophys Res. doi: 10.1029/2005JA011333 Google Scholar
  26. Liu JY, Chen YI, Chen CH, Liu CY, Chen CY, Nishihashi M, Li JZ, Xia YQ, Oyama, KI, Hattori K, Lin CH (2009) Seismo-ionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J Geophys Res. doi: 10.1029/2008JA013698 Google Scholar
  27. Mikhailova GA, Mikhailov YM, Kapustina OV, Druzhin GI, Smirnov SE (2008) Propagation of internal gravity waves to the altitudes of the ionospheric D and dynamo regions in the seismic region (Kamchatka): preliminary results. Geomagn Aeronomy 48(2):251–259CrossRefGoogle Scholar
  28. Miyaki K, Hayakawa M, Molchanov OA (2002) The role of gravity waves in the lithosphere–ionosphere coupling, as revealed from the subionospheric LF propagation data. In: Hayakawa M, Molchanov O (eds) Seismo-electromagnetics (lithosphere–atmosphere–ionosphere coupling). Terrapub, Tokyo, pp 229–232Google Scholar
  29. Muslim B, Efendi J, Suryanal DR (2013) Developing near real time TEC computation system from GPS data for improving spatial resolution of ionospheric observation over Indonesia. In: Proceedings of 1st international seminar on space science and technology, Serpong, Indonesia, 3 Dec 2013Google Scholar
  30. Nenovski PI, Pezzopane M, Ciraolo L, Vellante M, Villante U, De Lauretis M (2015) Local changes in the total electron content immediately before the 2009 Abruzzo earthquake. Adv Space Res 55(1):243–258CrossRefGoogle Scholar
  31. Ogawa T, Nishitani N, Tsugawa T, Shiokawa K (2012) Giant ionospheric disturbances observed with the SuperDARN Hokkaido HF radar and GPS network after the 2011 Tohoku earthquake. Earth Planets Space 64:1295–1307CrossRefGoogle Scholar
  32. Omori Y, Yasuoka Y, Nagahama H, Kawada Y, Ishikawa T, Tokonami S, Shinogi M (2007) Anomalous radon emanation linked to pre-seismic electromagnetic phenomena. Nat Hazards Earth Syst Sci 7:629–635CrossRefGoogle Scholar
  33. Ouzounov D, Liu D, Chunli K, Cervone G, Kafatos M, Taylor P (2007) Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 431:211–220CrossRefGoogle Scholar
  34. Perrone L, Korsunova LP, Mikhailov AV (2010) Ionospheric precursors for crustal earthquakes in Italy. Ann Geophys 28:941–950CrossRefGoogle Scholar
  35. Pulinets S (2004) Ionospheric precursors of earthquakes; recent advances in theory and practical applications. Terr Atmos Ocean Sci 15(3):413–436Google Scholar
  36. Pulinets SA, Boyarchuk K (2004) Ionospheric precursors of earthquakes. Springer, BerlinGoogle Scholar
  37. Pulinets SA, Legen’ka AD (2002) Dynamics of the near-equatorial ionosphere prior to strong earthquakes. Geomagn Aeron 42:239–244Google Scholar
  38. Pulinets SA, Legen’ka AD (2003) Spatial-temporal characteristics of the large scale disturbances of electron concentration observed in the F-region of the ionosphere before strong earthquakes. Cosm Res 41(3):1–10CrossRefGoogle Scholar
  39. Pulinets SA, Ouzounov D (2011) Lithosphere–atmosphere–ionosphere coupling (LAIC) model—an unified concept for earthquake precursors validation. J Asian Earth Sci 41:371–382CrossRefGoogle Scholar
  40. Pulinets SA, Legen’Ka AD, Gaivoronskaya TV, Depuev VK (2003) Main phenomenological features of ionospheric precursors of strong earthquakes. J Atmos Sol Terr Phys 65(16):1337–1347CrossRefGoogle Scholar
  41. Pundhir D, Singh B, Singh OP (2014) Anomalous TEC variations associated with the strong Pakistan–Iran border region earthquake of 16 April 2013 at a low latitude station Agra, India. Adv Space Res 53(2):226–232CrossRefGoogle Scholar
  42. Rios VH, Kim VP, Hegai VV (2004) Abnormal perturbations in the F2 region ionosphere observed prior to the great San Juan earthquake of 23 November 1977. Adv Space Res 33(3):323–327CrossRefGoogle Scholar
  43. Rozhnoi A, Solovieva MS, Molchanov OA, Hayakawa M (2004) Middle latitude LF (40 kHz) phase variations associated with earthquakes for quiet and disturbed geomagnetic conditions. Phys Chem Earth 29:589–598CrossRefGoogle Scholar
  44. Rozhnoi A, Solovieva MS, Molchanov OA, Hayakawa M, Maekawa M, Biagi PF (2005) Anomalies of LF signal during seismic activity in November–December 2004. Nat Hazards Earth Syst Sci 5:1–4CrossRefGoogle Scholar
  45. Rozhnoi A, Solovieva M, Molchanov O, Biagi PF, Hayakawa M (2007) Observation evidences of atmospheric Gravity Waves induced by seismic activity from analysis of subionospheric LF signal spectra. Nat Hazards Earth Syst Sci 7(5):625–628CrossRefGoogle Scholar
  46. Somsikov VM (1991) Atmospheric waves caused by the solar terminator. Geomagn Aeron 31(1):1–12Google Scholar
  47. Song Q, Ding F, Yu T, Wan W, Ning B, Liu L, Zhao B (2015) GPS detection of the coseismic ionospheric disturbances following the 12 May 2008 M7. 9 Wenchuan earthquake in China. Sci China Earth Sci 58(1):151–158CrossRefGoogle Scholar
  48. Toutain J-P, Baubron J-C (1998) Gas geochemistry and seismotectonics: a review. Tectonophysics 304:1–27CrossRefGoogle Scholar
  49. van Dam JW, Horton W, Tsintsadze NL, Kaladze TD, Garner TW, Tsamalashvili LV (2009) Some physical mechanisms of precursors to earthquakes. J Plasma Fusion Res 8:199–202Google Scholar
  50. Villalobos C, Bravo M, Ovalle E, Foppiano AG (2016) Ionospheric characteristics prior to the greatest earthquake in recorded history. Adv Space Res 57:1345–1359CrossRefGoogle Scholar
  51. Xu T, Chen Z, Li C, Wu J, Hu Y, Wu Z (2011) GPS total electron content and surface latent heat flux variations before the 11 March 2011 M9. 0 Sendai earthquake. Adv Space Res 48(8):1311–1317CrossRefGoogle Scholar
  52. Yao YB, Chen P, Zhang S, Chen JJ, Yan F, Peng WF (2012) Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010. Nat Hazards Earth Syst Sci 12(3):575–585CrossRefGoogle Scholar
  53. Zeng ZC, Zhang B, Fang GY, Wang DF, Yin HJ (2009) An analysis of ionospheric variations before the Wenchuan earthquake with DEMETER data. Chin J Geophys 52(1):13–22CrossRefGoogle Scholar
  54. Zhu F, Zhou Y, Wu Y (2013) Anomalous variation in GPS TEC prior to the 11 April 2012 Sumatra earthquake. Astrophys Space Sci 345(2):231–237CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Christina Oikonomou
    • 1
    Email author
  • Haris Haralambous
    • 1
  • Buldan Muslim
    • 2
  1. 1.Frederick Research CenterNicosiaCyprus
  2. 2.Space Science CenterIndonesian National Institute of Aeronautics and SpaceBandungIndonesia

Personalised recommendations