Natural Hazards

, Volume 82, Issue 3, pp 2107–2132 | Cite as

Establishing rainfall frequency contour lines as thresholds for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005

Original Paper

Abstract

In this paper, a method to derive rainfall thresholds based on the relationship between daily and the antecedent rainfall up to 6 days prior to landslide occurrence is proposed for the analysis of 134 landslide days in Tegucigalpa, Honduras, during the years 1980–2005. Based on a simple graphical procedure, rainfall frequency contour lines have been drawn in the daily versus antecedent rainfall plots to connect rainfall combinations relatively having the same frequency of occurrence. A two-bound threshold has been established: Below the lower bound, rainfall events are so frequent that any landslide day may only occur due to a significant anthropogenic disturbance, while, above the upper bound, rainfall alone is capable of inducing landslide days. Contour lines originating at the same daily rainfall value in all plots were then grouped together to form a threshold set, for which the number of well-predicted landslide days and false alarms was determined. It has been determined that 16 and 84 landslide days have fallen below the lower bound and above the upper bound, respectively. In addition, this method has been proven effective in the distinction between days with and without landslides, since it has led to a 23 % reduction in the number of false alarms per well-predicted landslide day when compared to a previously established threshold line for Tegucigalpa.

Keywords

Rainfall threshold Triggering rainfall Antecedent rainfall Urban landslides Rainfall frequency contour lines Tegucigalpa 

References

  1. Alcántara-Ayala I (2009) Disasters in Mexico and Central America: a little bit more than a century of natural hazards. In: Edgardo ML (ed) Developments in earth surface process, vol 13. Elsevier, Amsterdam, pp 75–97Google Scholar
  2. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73(3–4):247–265. doi:10.1016/j.enggeo.2004.01.007 CrossRefGoogle Scholar
  3. Althuwaynee OF, Pradhan B, Ahmad N (2014) Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas. Landslides. doi:10.1007/s10346-014-0512-y Google Scholar
  4. Angel S, Bartley K, Derr M (2004) Rapid urbanization in Tegucigalpa, Honduras: preparing for the doubling of the city’s population in the next twenty-five years, vol 3c. Princeton University, PrincetonGoogle Scholar
  5. Antronico L, Borrelli L, Coscarelli R, Pasqua AA, Petrucci O, Gullà G (2013) Slope movements induced by rainfalls damaging an urban area: the Catanzaro case study (Calabria, southern Italy). Landslides 10(6):801–814. doi:10.1007/s10346-013-0431-3 CrossRefGoogle Scholar
  6. Bai S, Wang J, Thiebes B, Cheng C, Yang Y (2014) Analysis of the relationship of landslide occurrence with rainfall: a case study of Wudy County, China. Arab J Geosci 7(4):1277–1285. doi:10.1007/s12517-013-0939-9 CrossRefGoogle Scholar
  7. Bui DT, Pradhan B, Lofman O, Revhaug I, Dick ÃB (2013) Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Nat Hazards 66(2):707–730. doi:10.1007/s11069-012-0510-0 CrossRefGoogle Scholar
  8. Calvello M, d’Orsi RN, Piciullo L, Paes N, Magalhaes M, Lacerda WA (2015) The Rio de Janeiro early warning system for rainfall-induced landslides: analysis of performance for the years 2010–2013. Int J Disaster Risk Reduct 12:3–15. doi:10.1016/j.ijdrr.2014.10.005 CrossRefGoogle Scholar
  9. Cascini L, Bonnard C, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 199–235Google Scholar
  10. Cepeda J, Höeg K, Nadim F (2010) Landslide-triggering rainfall thresholds: a conceptual framework. Q J Eng Geol Hydrogeol 43(1):69–84. doi:10.1144/1470-9236/08-066 CrossRefGoogle Scholar
  11. Chleborad AF, Baum RL, Godt JW (2006) Rainfall thresholds for forecasting landslides in the Seattle, Washington, area—exceedance and probability. U.S. Geological Survey Open-File Report 2006-1064Google Scholar
  12. Dahal RK, Hasegawa S (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100(3–4):429–443. doi:10.1016/j.geomorph.2008.01.014 CrossRefGoogle Scholar
  13. Dai FC, Lee CF (2001) Frequency–volume relation and prediction of rainfall-induced landslides. Eng Geol 59(3–4):253–266. doi:10.1016/S0013-7952(00)00077-6 CrossRefGoogle Scholar
  14. Erener A, Duzgun HBS (2013) A regional scale quantitative risk assessment for landslides: a case of Kumluca watershed in Bartin, Turkey. Landslides 10(1):55–73. doi:10.1007/s10346-012-0317-9 CrossRefGoogle Scholar
  15. Floris M, Bozzano F (2008) Evaluation of landslide reactivation: a modified rainfall threshold model based on historical records of rainfall and landslides. Geomorphology 94(1):40–57. doi:10.1016/j.geomorph.2007.04.009 CrossRefGoogle Scholar
  16. Garcia-Urquia E, Axelsson K (2014) The use of press data in the development of a database for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005. Nat Hazards 73(2):237–258. doi:10.1007/s11069-014-1043-5 CrossRefGoogle Scholar
  17. Garcia-Urquia E, Axelsson K (2015) Rainfall thresholds for the initiation of urban landslides in Tegucigalpa, Honduras: an application of the critical rainfall intensity. Geogr Ann Ser A Phys Geogr 97(1):61–83. doi:10.1111/geoa.12092 CrossRefGoogle Scholar
  18. Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12(3):829–842. doi:10.5194/nhess-12-829-2012 CrossRefGoogle Scholar
  19. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98(3–4):239–267. doi:10.1007/s00703-007-0262-7 CrossRefGoogle Scholar
  20. Harp EL, Castañeda M, Held MD (2002) Landslides triggered by Hurricane Mitch in Tegucigalpa, Honduras. U.S. Geologic Survey Open File Report 02-0033, DenverGoogle Scholar
  21. Harp EL, Reid ME, McKenna JP, Michael JA (2009) Mapping of hazard from rainfall-triggered landslides in developing countries: examples from Honduras and Micronesia. Eng Geol 104(3–4):295–311. doi:10.1016/j.enggeo.2008.11.010 CrossRefGoogle Scholar
  22. Heyerdahl H, Harbitz CB, Domaas U, Sandersen F, Tronstad K, Nowacki F, Engen A, Kjekstad O, Devoli S, Buezo SG, Diaz MR, Hernandez W (2003) Rainfall-induced lahars in volcanic debris in Nicaragua and El Salvador: practical mitigation. In: Proceedings of international conference on fast slope movements—prediction and prevention for risk mitigation, IC-FSM2003, Naples, Italy, 11–13 MayGoogle Scholar
  23. Huggel C, Khabarov N, Obersteiner M, Ramírez J (2010) Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in Colombia. Nat Hazards 52(2):501–518. doi:10.1007/s11069-009-9393-0 CrossRefGoogle Scholar
  24. Ibsen M-L, Casagli N (2004) Rainfall patterns and related landslide incidence in the Porretta-Vergato region, Italy. Landslides 1(2):143–150. doi:10.1007/s10346-004-0018-0 CrossRefGoogle Scholar
  25. Jaiswal P, van Westen CJ (2009) Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology 112(1–2):96–105. doi:10.1016/j.geomorph.2009.05.008 CrossRefGoogle Scholar
  26. JICA (2002) The study on flood control and landslide prevention in Tegucigalpa metropolitan area of the Republic of Honduras. In: P. International, I. Nikken Consultants (eds) Tegucigalpa, HondurasGoogle Scholar
  27. Kanungo DP, Sharma S (2014) Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas, India. Landslides 11(4):629–638. doi:10.1007/s10346-013-0438-9 CrossRefGoogle Scholar
  28. Khan YA, Lateh H, Baten MA, Kamil AA (2012) Critical antecedent rainfall conditions for shallow landslides in Chittagong City of Bangladesh. Environ Earth Sci 67(1):97–106. doi:10.1007/s12665-011-1483-0 CrossRefGoogle Scholar
  29. Kirschbaum D, Adler R, Adler D, Peters-Lidard C, Huffman G (2012) Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years. J Hydrometeorol 13(5):1536–1551. doi:10.1175/JHM-D-12-02.186 CrossRefGoogle Scholar
  30. Kirschbaum D, Stanley T, Simmons J (2015) A dynamic landslide hazard assessment system for Central America and Hispaniola. Nat Hazards Earth Sys Sci Discuss 3:2847–2882. doi:10.5194/nhessd-3-2847-2015 CrossRefGoogle Scholar
  31. Lall SV, Deichmann U (2012) Density and disasters: economics of urban hazard risk. The World Bank Researcher Observer 27:74–105. doi:10.1093/wbro/lkr006 CrossRefGoogle Scholar
  32. Larsen MC (2008) Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies. Adv Geosci 14:147–153. doi:10.5194/adgeo-14-147-2008 CrossRefGoogle Scholar
  33. Lee ML, Ng KY, Huang YF, Li WC (2014) Rainfall-induced landslides in Hulu Kelang area, Malaysia. Nat Hazards 70(1):353–375. doi:10.1007/s11069-013-0814-8 CrossRefGoogle Scholar
  34. Li C, Ma T, Zhu X, Li W (2011) The power–law relationship between landslide occurrence and rainfall level. Geomorphology 130(3–4):221–229. doi:10.1016/j.geomorph.2011.03.018 CrossRefGoogle Scholar
  35. Ma T, Li C, Lu Z, Wang B (2014) An effective antecedent precipitation model derived from the power–law relationship between landslide occurrence and rainfall level. Geomorphology 216:187–192. doi:10.1016/j.geomorph.2014.03.033 CrossRefGoogle Scholar
  36. Marques R, Zêzere J, Trigo R, Gaspar J, Trigo I (2008) Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): relationships with the North Atlantic Oscillation. Hydrol Process 22(4):478–494. doi:10.1002/hyp.6879 CrossRefGoogle Scholar
  37. Michoud C, Bazin S, Blikra LH, Derron MH, Jaboyedoff M (2013) Experiences from site-specific landslide early warning systems. Nat Hazards Earth Syst Sci 13(10):2659–2673. doi:10.5194/nhess-13-2659-2013 CrossRefGoogle Scholar
  38. Nadim F, Cepeda J, Sandersen F, Jaedicke C, Heyerdahl H (2009) Prediction of rainfall-induced landslides through empirical and numerical models. Paper presented at the First Italian Workshop on Landslides, Rainfall induced landslides: mechanisms, monitoring techniques and nowcasting models for early-warning systems, Naples, ItalyGoogle Scholar
  39. Pearce-Oroz G (2005) Causes and consequences of rapid urban spatial segregation. In: Varady D (ed) Desegragating the city: ghettos, enclaves and inequality. Suny Press, New York, pp 108–124Google Scholar
  40. Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity—duration thresholds in Japan. Geomorphology 118(1–2):167–175. doi:10.1016/j.geomorph.2009.12.016 CrossRefGoogle Scholar
  41. Schuster R, Highland L (2007) The third Hans Cloos lecture Urban landslides: socioeconomic impacts and overview of mitigative strategies. Bull Eng Geol Environ 66(1):1–27. doi:10.1007/s10064-006-0080-z CrossRefGoogle Scholar
  42. Sengupta A, Gupta S, Anbarasu K (2010) Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Nat Hazards 52(1):31–42. doi:10.1007/s11069-009-9352-9 CrossRefGoogle Scholar
  43. UN-Habitat (2012) Towards a new urban transition. The state of Latin American and Caribbean cities, 2012 edn. United Nations Human Settlement ProgrammeGoogle Scholar
  44. Vranken L, Vantilt G, Van Den Eeckhaut M, Vandekerckhove L, Poesen J (2015) Landslide risk assessment in a densely populated hilly area. Landslides 12(4):787–798. doi:10.1007/s10346-014-0506-9 CrossRefGoogle Scholar
  45. Westerberg I, Walther A, Guerrero JL, Coello Z, Halldin S, Xu CY, Lundin LC (2010) Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics. Theor Appl Climatol 101(3–4):381–396. doi:10.1007/s00704-009-0222-x CrossRefGoogle Scholar
  46. Winter MG, Bromhead EN (2012) Landslide risk: some issues that determine societal acceptance. Nat Hazards 62(2):169–187. doi:10.1007/s11069-011-9987-1 CrossRefGoogle Scholar
  47. Zezêre JL, Vaz T, Pereira S, Oliveira SC, Marques R, Garcia RAC (2015) Rainfall thresholds for landslide activity in Portugal: a state of the art. Environ Earth Sci 73(6):2917–2936. doi:10.1007/s12665-014-3672-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Engineering SciencesUppsala University, ÅngströmlaboratorietUppsalaSweden
  2. 2.School of Civil EngineeringNational Autonomous University of HondurasTegucigalpaHonduras

Personalised recommendations